

CPK Automotive

Engine Emission Management

CPK Automotive

NO_x-Sensor for Emission - and Immission - Measurement

PEMS 2021 Virtual Conference

11. + 12. March 2021

Riverside, CA

Agenda

- 1 Introduction dosimeter principle
- 2 NO_x sensor design
- 3 Test results
- 4 NO_x sensor architecture
- 5 Summary & next steps

- Immission measurement
 - => low concentrations (ppb-range)
- Emission measurement

=> higher concentrations (ppm-range)

Typical NO _x concentration of Diesel exhaust	
engine out, raw	500ppm
but	
tailpipe post SCR System	< 10ppm

Fig. 1: Operation principle of a dosimeter-type gas sensing device

with a sensitive layer as an adsorbent

Fig. 2: Sensor response (SR) during accumulation phase with concentration (c) and regeneration phase

Source: Doctor's thesis I. Marr, Materialien für dosimeterartige Gassensoren zur Detektion im ppm- und im Sub-ppm-Bereich, Bayreuth, 2016

Requirements for NO_x-storage materials:

- Selective storage of NO_x
- Sufficient holding capability (strong interaction between NO_x and storage material)
- Change of at least one electrical measuring signal when NO_x molecules get stored
 Signal must be proportional to NO_x load of storage material
- Load of storage material must not influence the adsorption of the NO_x molecules
- An actively initiated regeneration of storage material and measuring signal must be possible

=> Potassium permanganate was found to fulfill the requirements best

Source: Doctor's thesis I. Marr, Materialien für dosimeterartige Gassensoren zur Detektion im ppm- und im Sub-ppm-Bereich, Bayreuth, 2016

Sensor design used for testing

2: NOx sensor design

en ControlBox DEM

W Co

Same sensor design operated at higher temperature shows gas sensor behavior

Impedometric sensor response (Nyquist diagram)

Equivalent circuit R II C:

$$\underline{Z} = \frac{R}{1 + j\omega CR}$$

Determination of electrical conductibility with alternating current method:

System is stimulated by **sinusoidal alternating voltage** with amplitude U_o and angular frequency ω .

 $(U = U_0 . \sin(\omega t))$

System answer is an **alternating current signal** with amplitude I_o and **displacement angle** φ .

 $(I = I_0 . \sin(\omega t + \boldsymbol{\varphi}))$

Operating frequency as high as needed to stay away from electrode effects

Nyquist diagram with and w/o NO concentration

- Operating temperature 635°C (gas sensor behaviour)
- Basic gas atmosphere (GG) contents of N₂, O₂, CO₂ and H₂O
- Semicircle describes conductivity of NO_x sensitive layer over frequency.

(Resistance decreases with increasing NO_x concentration)

Gas reactor testing with synthetic exhaust

NO_x dependence on oxygen content (Lambda)

- Lab tests showed dependance of NO_x-values on Lambda-values (residual oxygen in exhaust gas)
- => Integration of O₂-measurement into NO_x sensor to adjust measurement values in electronics

Characteristic curve of NO_x sensor in dependence of Lambda, measured in synthetic exhaust

Test setup with comparison of:

- NO_x sensor sample
- Engine dyno FTIR device
- Benchmark NO_x sensor

Initial test on engine testbench

Comparison NO_x measurement on engine test bench

Comparison O_2 corrected value of Impedancesensor with benchmarksensor during variation of O_2 concentration

Oxygen sensitive layer integrated in sensor design and electronics

Summary

- Simple sensor design allows cost effective production in thickfilm technology
- Sensor can be operated @ 350°C as a dosimeter...
 - Immission measurement (ppb-range)
- ... and @ 650°C as a gas sensor
 - Emission measurement (ppm-range)
- NOx-signal dependence on oxygen content requires integration of O₂ measurement
- The sensor element with the NO_x sensitive layer including electronics and as well ...
- ... the NO_x sensor electronics (analysis elements, μ processor, heater ...) have to be industrialized

Patents pending

	Impedance based NOx Sensor		Commercial NOx Sensor
Functional material	Potassium Manganate		Zirconium Oxide
Function	Dosimeter principle	Sensor principle	Sensor principle
Operational Temperature	350°C	650°C	800°C
Measurement range	5ppm +/- 10%	1500ppm +/- 10%	1500ppm +/- 10%
Suitable for ultra low NOx requirements	+	-	-
Resistance to exhaust flow impurities e.g. silicates	+	0	-

CPK Automotive GmbH & Co. KG Gildenstrasse 4c D-48157 Muenster Germany Phone: +49 251 777969-0 info@cpk-automotive.com