Ammonia Measurements in Exhaust Using PEMS and SEMS

<u>Kotaro TANAKA^{*},</u> Kazuki Kamidaira, Katsuhiro Kushida, Satoshi Sakaida, Mitsuru Konno (Ibaraki University), Takeshi TANGE (NGK Spark Plug Co., Ltd.) Susumu SATO (Tokyo Institute of Technology)

Ammonia (NH₃)

NOx, HC and CO has been reduced due to the improvement of the engine combustion and the use of after-treatment system.

From PEMS to SEMS

PEMS is heavy, which has an influence on emission.

分析成分の検出限界 N₂O: 0.6 ppm CH₄: 0.6 ppm NH₅: 1 ppm NO₂: 1 ppm NO: 5 ppm CO₂: 0.2 %

To measure NH_3 emission, FTIR or our developed laser-based measurement system are set in the automobiles. (Total system weight (battery, instrument etc.) is approximately 100 kg)

Sensor-based measurement system (SEMS) is attractive because system is small and light.

To measure real-world NH_3 emitted from gasoline vehicles using a sensor-based measurement, and to elucidate tendency of NH_3 emission in real world.

 \succ Evaluation of sensor-based measurements of NH₃

Sensor based measurement system for NH₃

Sensor signals were compared with those obtained by FT-IR and laser-based ₅ measurement system.

Evaluation of NH₃ signal obtained by each measurement system

Pressure [atm]	1						
Temperature [K]	298						
Flow rate [L / min]	880						
NO [ppm] NH ₃ [ppm]	50	100	200	300	400	500	
NO+NH ₃ [ppm]	50	100	200	300	400	500	
NO+NH ₃ mixing ratio	1:1, 1:3, 3:1						

- Using NO and NH₃ standard gas, the procedure of NH3 measurement using two sensors was evaluated.
- The obtained NH₃ signal using sensors were compared with those obtained by FTIR and laser-based measurement system.

NH₃ signals obtained by each instrument

[•]Measurement of NH₃ in gasoline vehicle emission

WLTC mode (cold start)

NOx sensor signals (No.1 vehicle)

- NO concentration obtained by potential sensor for NO was in good agreement with that obtained by FTIR.
- NO concentration obtained by NOx sensor was larger than that obtained by potential sensor for NO.

NH₃ in gasoline vehicle (No. 1)

- Tendency of NH₃ concentration obtained by two sensors were in agreement with those obtained by FTIR and laser-based measurement system.
- The concentration obtained by two sensors was larger than those obtained by FTIR and laser-based measurement system.
- \succ NH₃ was emitted under the acceleration and engine start conditions .

NH₃ in gasoline vehicle (No. 2)

- Tendency of NH₃ concentration obtained by two sensors were in agreement with those obtained by FTIR and laser-based measurement system.
- The concentration obtained by two sensors was larger than those obtained by FTIR and laser-based measurement system.
- \succ NH₃ was emitted under the acceleration and engine start conditions .

Route for emission measurements

RDE measurement of NH₃ in gasoline vehicle (No. 2)

- > Now, on board measurement of NH_3 in gasoline exhaust is performed.
- ➤ There are some difference between the NH₃ concentration obtained by two sensors and that obtained by laser-based measurement system. The cause of the difference are analyzed and NH₃ measurement in gasoline vehicle will be continued.

Summary

- NH₃ measurement procedure using a zirconia NOx sensor and an NO potential sensor was evaluated. It is found that there is possibility that NH₃ emitted from gasoline vehicles can be measured using the two sensors.
- It is confirmed NH_3 was emitted from gasoline vehicles under the highspeed and acceleration conditions, and the conditions where engine starts.
- There are some difference between the NH₃ concentration obtained by the sensors and that obtained by laser-based measurement systems, whose causes will be analyzed and the measurement of real-world NH₃ emitted from gasoline vehicles will be continued.

Thank you for your kind attention.

Appendix

NH₃, NO₂, N₂O, THC signal(No. 2 vehicle)

F

NH₃ measurements using laser absorption spectroscopy

NH₃ concentration can be quantified without interference of other species, when the appropriate absorption line is selected.

Ammonia measurement system using near-infrared laser spectroscopy

Cell volume (L)	0.9
Temperature (K)	393
Total pressure (kPa)	10.4
Time resolution (s)	1

Picture of optics in near-IR laser based ammonia measurement system

45 cm