Laboratory Investigation of Exhaust NO_X/NH₃ Sensors for Onboard Emissions Monitoring

Imad Khalek, Vinay Premnath & Chris Sharp

The 10th Annual PEMS Conference & Workshop, CE-CERT at Riverside March 11-12, 2021

POWERTRAIN ENGINEERING

1

Acknowledgements

- This phase of the work was funded by the Truck & Engine Manufacturers Association (EMA).
 - The system data acquisition and sensors were later used on sensor work on SwRI ECTO-LAB, funded by EPA, and not covered in this presentation
 - The same system will be used on SwRI ultra low NO_X engine platform with portions funded by EPA and EMA
- The sensor manufacturers Bosch, Denso, Delphi and Continental contributed in-kind sensors and technical support

2

Objectives

- The objectives of this work are to:
 - Develop and apply a CFR Part 1065 bench-test procedure to investigate NO_X/NH_3 sensors like that used for laboratory or field instruments for:
 - Accuracy, Repeatability, Noise, Linearity and Response Time
 - Verify the performance of sensors at various NO_X/NH_3 levels ranging from 0 to 1500 ppm
 - Make the data acquisition system and data logging adaptable to various applications beyond bench-testing to include sensor work on SwRI ECTO-LAB and engine work

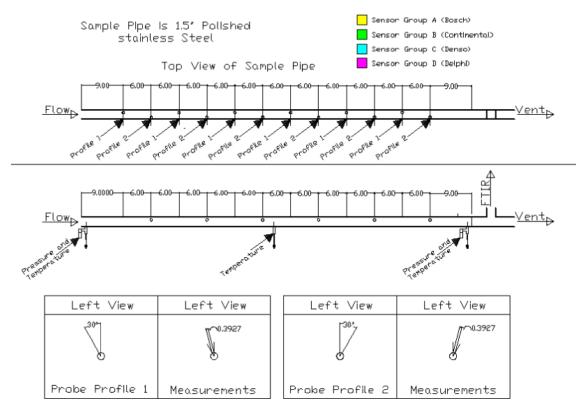
Note that currently there is no bench-testing procedure per CFR for sensors like laboratory instruments and field instruments. This is done only as a reference.

3

Test Sensors Received By SwRI

Continental NOx sensor

Bosch NOx sensor



Delphi NH₃ sensor

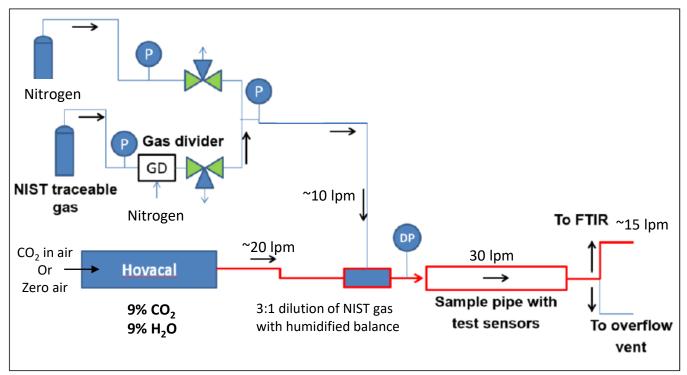
POWEKI KAIN ENGINEEKING

Test Sample Pipe

Sample pipe with heat wrap and insulation

- Highly polished stainless-steel pipe
- Heated to 191°C with verified temperature distribution

Experimental Schematic/Target Matrix



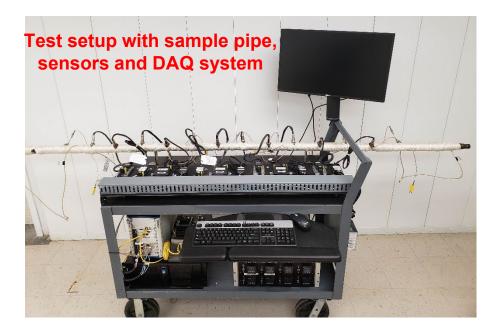
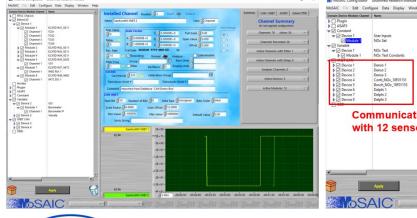

FIGURE 1. SCHEMATIC OF TEST SETUP FOR CALIBRATING SENSORS

TABLE 1. CALIBRATION RANGE FOR EACH GAS

Gases	Calibration range	Span bottle 1	Span bottle 2	Span bottle 3
NO	0 to 1500 ppm	75 ppm to 1500 ppm	5 ppm to 100 ppm	0.5-10 ppm
NO ₂	0 to 1500 ppm	75 ppm to 1500 ppm	5 ppm to 100 ppm	0.5-10 ppm
NH ₃	0 to 1500 ppm	75 ppm to 1500 ppm	5 ppm to 100 ppm	0.5-10 ppm

Experimental Setup – Sensors, Pipe and DAQ


Sensor setup

DAQ setup

Power supply setup

Accuracy, repeatability and noise verification- CFR 1065.305

- I. Supply a reference concentration y_{ref} from NIST bottle and allow time for signal stabilization
 - Record data for 30 seconds. Calculate y_i and σ_i
 - Calculate error $\varepsilon_i = y_I y_{ref}$
- 2. Repeat 10 times $(\overline{y_1}, \overline{y_2}, \overline{y_i}, ..., \overline{y_{10}}), (\sigma_1, \sigma_2, \sigma_i, ..., \sigma_{10}), (\epsilon_1, \epsilon_2, \epsilon_i, ..., \epsilon_{10})$

Accuracy

- Absolute $|(y_{ref} \text{ (or } \overline{y_{ref}}) - \text{mean of the ten } \overline{y_{i}}, \text{ (or } \overline{y_{i}})|$

Repeatability

- Two times stdev of the ten errors
- Repeatability = 2 $\cdot \sigma_{\varepsilon}$

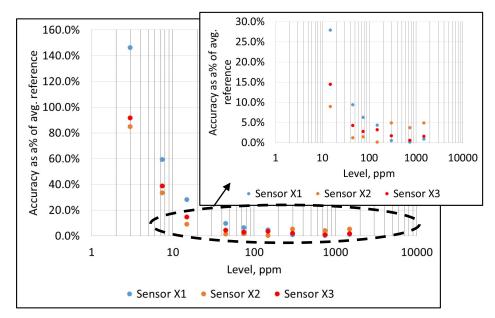
Noise

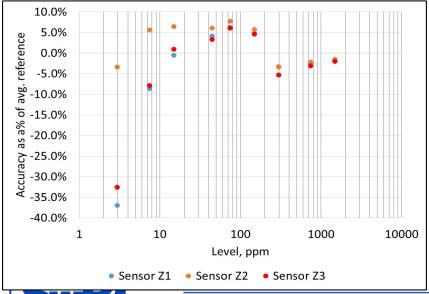
- Two times RMS of the ten stdevs
- Noise = $2 \cdot rms_{\sigma}$

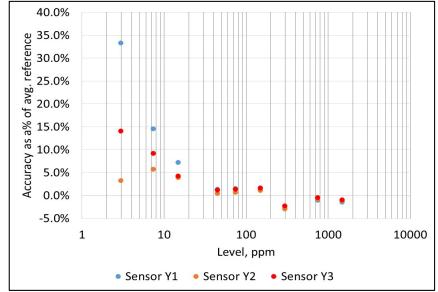
Linearity Verification – CFR 1065.307

Use the ten y_{i} , and reference values, y_{refi} to develop linear regression

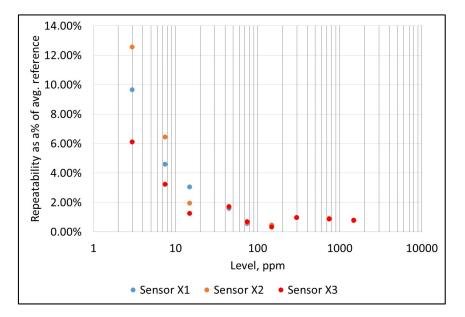
- Slope (a_{1y}) , Intercept (a_{0y}) , SEE and r^2

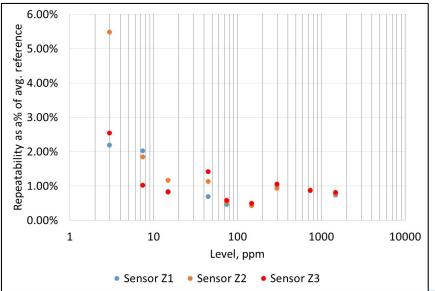

Measurement	Quantity	Linearity criteria			
system		$ x_{\min}(a_1-1) + a_0 $	<i>a</i> ₁	SEE	r ²
Gas analyzers for laboratory testing	X	≤ 0.5% · X max	0.99-1.01	≤1% · x max	≥0.998
Gas analyzers for field testing	X	≤1% · x max	0.99-1.01	≤1% · x max	≥0.998

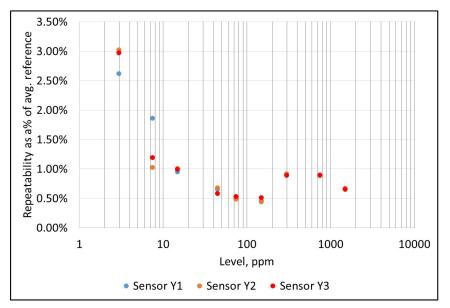

Response time – CFR 1065.308


Calculate the mean rise time, t_{10-90} , and mean fall time, t_{90-10}

NO Gas Results – Relative Accuracy of Sensors

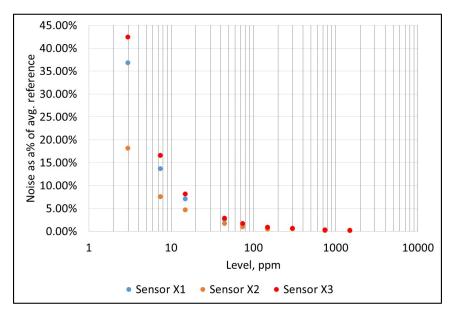


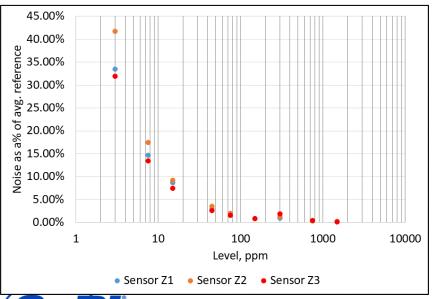

- For each manufacturer, all three test sensors performed similarly
- Relative accuracy decreases with decrease in conc. at levels < 10 ppm
- Accuracy improves at higher levels
 <~5% or less

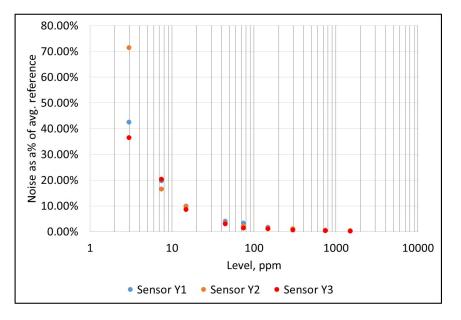


POWERTRAIN ENGINEERING

NO Gas Results – Relative Repeatability of Sensors

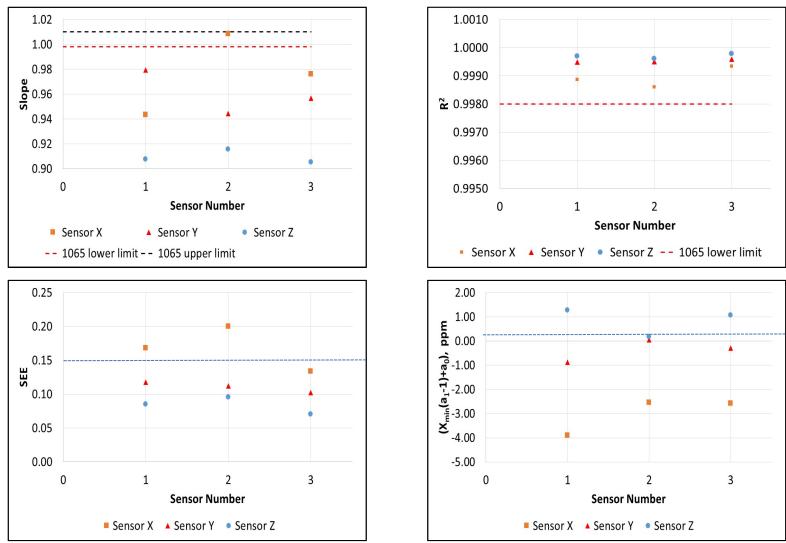

- For each manufacturer, all three test sensors performed similarly
- Repeatability of sensors was 1% to 2% for all sensors at levels > 10 ppm


POWERTRAIN ENGINEERING

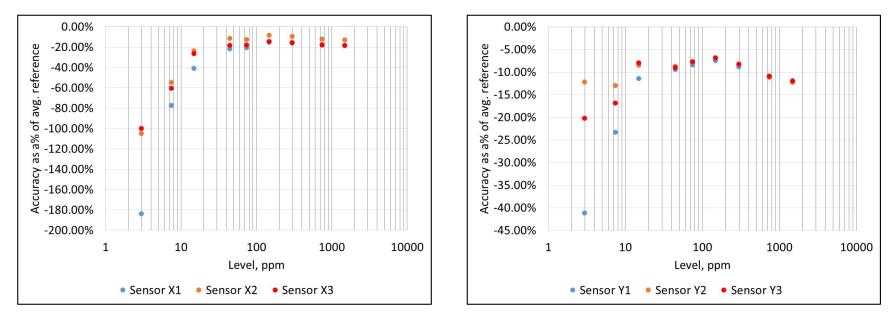


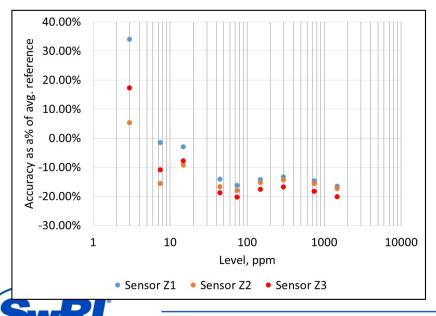
swri.org

NO Gas Results – Relative Noise of Sensors

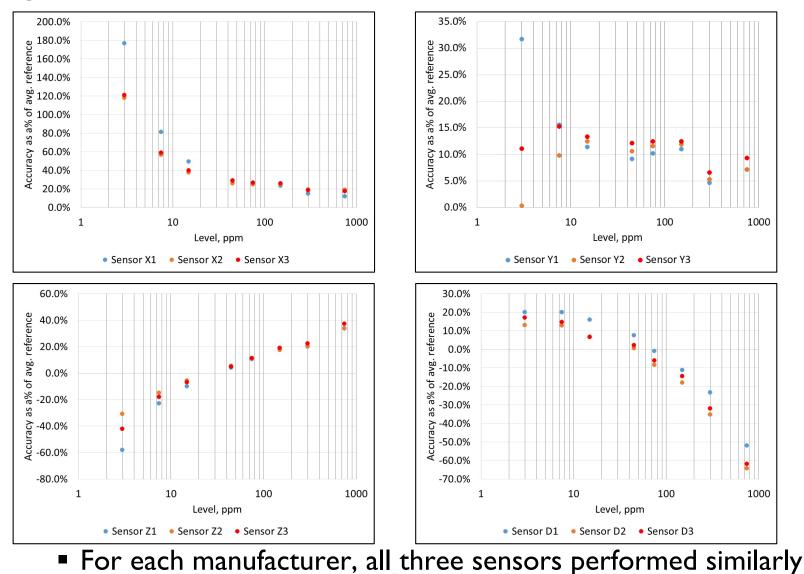


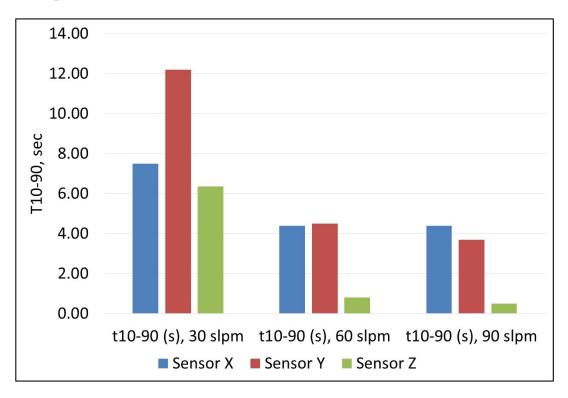
- For each manufacturer, all three test sensors performed similarly
- Noise is about 2% to 3% at levels
 > 10 ppm
 - Sensors became noisy below 10 ppm, reach 40% to 70% at 3 ppm


NO Gas Linearity (0 to 15 ppm)



- Sensors passed on R², and SEE and failed on slope and Intercept
- Results were similar for higher ranges especially for R2 and Slope


NO₂ Gas Results – Relative Accuracy of Sensors


- For each manufacturer, all three test sensors performed similarly
- Sensor generally underestimated NO₂ emissions
- Relative accuracy decreases with decrease in conc. at levels < 10 ppm, but increased for one sensor

NH₃ Gas Results – Relative Accuracy of Sensors

All sensors are sensitive to NH₃

Sensor Response Time – Function of flowrate

- Quick experiment conducted to demonstrate the effect of flowrate on response time
 - Sensor response time decreases with increase in flowrate through the sample pipe

Summary

- <u>Measuring below 5 ppm is challenging to get accurate results to</u> within less than 35%, even under ideal steady-state condition. This level is approaching the levels to be encountered in 2027 CARB low NOx compliant engines.
 - More R&D is needed with a focus on the area of sub 10-20 ppm
- Sensors exhibited good repeatability on the order of 5% at 3 ppm, and better repeatability at higher concentration
- Sensors exhibited a noise level on the order of 35% at 3 ppm, and less noise at higher concentration
- Differences were observed in sensor response to NO & NO₂. Sensors' response underestimates NO_2 as the concentration of NO_2 increase
- NH_3 is a major interference to NOx sensors. The NOx sensors responded to ammonia as good as the ammonia sensor. Such interference must be minimized or eliminated

Final Thoughts

- While this work was useful in highlighting some important information about NO_X/NH3 sensor performance, it was limited as it did not address the impact of additional steadystate and transient variables typically encountered in engine exhaust such as:
 - Flow rate, temperature, O_2 , H_2O and other variables and their rate of change, especially under transient operation
- The impact of these variables were addressed in a subsequent study at SwRI using ECTO-LAB, followed by current activities being setup on a low NO_X engine
- More work is needed to advance the state of NO_X sensors to yield accurate and repeatable results at tailpipe low-NO_X emission levels

