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Motivation

• Consider a self-driving car that needs to navigate without a driver
• For this, the vehicle has to make decisions based on the information it gathers 

from the environment, using various sensing devices such as cameras, radars, 
lidars
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Motivation

• Machine learning allows us to train mathematical models that can learn 
from data or past experience how to make decisions or predictions
• It is an important tool for automating decision-making in real-world 

applications
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Motivation

Machine learning has a large number of real-world applications:
• Image recognition (robotics, autonomous vehicles)
• Speech recognition (smart assistants such as Siri, machine translation)
• Product and content recommendations (video, music, news etc.)
• Navigation (self-driving cars, autonomous vehicles)
• Medical diagnosis
• Social media
• Gaming
• Computer security, fraud and malware detection



Motivation

• In this module, we will learn the basic principles of machine learning by 
training a simple machine learning model
• The most popular programming languages for machine learning are 

Python and C++ 
• In our project, we will use the Python programming language
• To learn the functionality of a specific command that appears in the 

learning module, you can either:
• Read from the Python tutorial from https://docs.python.org/3/tutorial/
• Or search “ Python + name of the command” on Google

https://docs.python.org/3/tutorial/


Training a machine learning model

• Using Python, we will train a simple machine learning model, called 
“linear regression”, to predict the digit of a handwritten image

Our input will be an image of an unknown handwritten digit
The model will predict the actual digit in the image

8Model

Output:

Input:

We will call the actual digit of the image as a “label”

In other words, the label of this image is 8



Training a machine learning model

• If the model predicts the wrong digit, an error is made

Our input will be an image of an unknown handwritten digit

3Model

Output:

Input:

Error!



Training a machine learning model

• Our goal is to train a model that minimizes the errors in the predictions

Our input will be an image of an unknown handwritten digit

3Model

Output:

Input:
If the model predicts the wrong digit, an error is made

Error!

The true digit in the image is 8, 
but the model has predicted 3!



Training a machine learning model
• For this, we will define a loss function, which measures the error 

between the predicted outcome and the actual label
• The loss function depends on the specific machine learning model.
• Some common ones are squared-error loss and cross-entropy loss

Model

Linear regression

Logistic regression

Squared error loss

Loss function

Cross-entropy loss



Training a machine learning model
• We will try to find the model that minimizes the loss function over a 

known set of images called the training set 
• The output of the training algorithm is the model

ModelTraining 
algorithm

Output: Model
Input: Training dataset

Training dataset consists of a set of images and their true labels)

We will represent the model as a vector “w”
Label: 8

Label: 4



Testing a model
• Then we will test how good this model is on a different set of images, 

called the “test set”
• The model will try to predict the actual digits of the images in the test set

Model

Output: Prediction of the digit

Test dataset

w
Label: 1



• We will then compute the percentage of the errors the model has made 
while predicting the labels of the images in the test set
• We will call this the accuracy of the model
• The higher the accuracy, the better our model is

Testing a model

Model

Output: Prediction of the digit
Test dataset

w
Label: 1

Model
w

Label: 1 Error!

Accuracy: 50%



• Note that training and testing are done on different images, in other 
words, the model has never “seen” the images in the test set during 
training
• Instead, the model “learns” how to interpret images on the training set, 

and uses this “information” to interpret previously unseen images, which 
are the images in the test set
• Next, we will train a simple machine learning model using the Python 

programming language

Comments



How to run your Python code on a web browser
• For this, we will use Google Colab, which is a free service created by Google 

that allows us to run our Python code on a web browser 
• The code runs on Google’s machines, not our local machine
• We can modify our code and see the results in real time
• No installation required, but you need an active internet connection
• Make sure to save a copy of your code and results (when your session ends or internet 

connection gets cut, you may lose your progress otherwise)
• Can be integrated with Google drive (can save your code on Google drive)

• To use it, we need a Google account
• Create a Google account 

• If you have a gmail account, you can skip this step
• Sign in to your Google account



How to run your Python code on a web browser

• To use it, we need a Google account
• Create a Google account by going to 

www.google.com and click on “Sign In” at the 
top right, then click Create Account -> For 
myself
• If you have a Google account already, you can skip 

this step

• Then, sign in to your Google account

http://www.google.com/


• Open the Google Colab web page in your web browser:
https://colab.research.google.com

How to run your Python code on a web browser



• After opening the Google Colab website, click on File -> New Notebook

How to run your Python code on a web browser



• The you will see a new page where you can type your code – we call 
this a “notebook”

How to run your Python code on a web browser



• Lets write a code that prints “Hello world” on the screen to test it
• After typing your code, click on the “run cell” button

How to run your Python code on a web browser



• After the execution of the code ends, you will see the result on the 
screen

How to run your Python code on a web browser

Next, we will see how to train a simple machine learning model using Python 
and the Colab framework 



• Now we will use Google Colab for training our model
• In the following, we will go through each step of the code  
• First, lets import some Python packages that we will need 

How to train a simple machine learning model



• Next, we will download the handwritten images dataset from 
http://yann.lecun.com/exdb/mnist/ 
• This dataset is called the MNIST dataset, and is a popular dataset 

used in machine learning
• The dataset consists of four files (test images, test labels, train 

images, train labels)
• The following piece of code will download the dataset

How to train a simple machine learning model



• The dataset has 60000 images in the training set, and 10000 images in 
the test set
• Each image in the dataset is an 28x28 image, meaning that it consists of 

28 pixels in each dimension
• We will train a model with size 28x28 =784 

How to train a simple machine learning model

1 28

1

28

…

28x 28 image

We will now define these variable in the program:



• These are grayscale images, and each pixel value is between 0 and 255, 
where 0=black, 255=white, and the numbers in between correspond to 
gray. 

How to train a simple machine learning model

28x 28 image

1 28

1

28

…

Pixel value = 0 (black)



• Next, our program will read the contents of the dataset and store them
• First, we will read the contents of the images in the training set
• These correspond to the pixel values of the images in the training set

How to train a simple machine learning model

This step normalizes the pixel values so that they are between 0 and 1  instead of 0 and 255



• Next, we will read the labels that correspond to the images in the training
set

How to train a simple machine learning model



• Then, we will read the contents of the images in the test set

How to train a simple machine learning model



• Finally, we will read the labels that correspond to the images in the test
set
• The labels of the test set are needed for computing the accuracy of the 

model, to check whether the label predicted by the model matches the 
actual label of the images in the test set

How to train a simple machine learning model



• We can print some information about our dataset and model
• The following commands will print the model size, number of images in 

the training set, and the number of images in the test set: 

How to train a simple machine learning model

Output of the program after execution



• We can also illustrate an example image from the training set

How to train a simple machine learning model

Output of the program after execution



• Similarly, we can illustrate an example image from the test set

How to train a simple machine learning model

Output of the program after execution



• The original MNIST dataset contains images for 10 digits
• In our example, we will extract only the images corresponding to two 

specific digits
• Our goal will be to predict the digit of a given image
• In the example below, we extract the images and labels corresponding to 

digits 3 and 7

How to train a simple machine learning model



• The original MNIST dataset contains images for 10 digits
• In our example, we will extract only the images corresponding to two 

specific digits
• Our goal will be to predict the digit of a given image
• In the example below, we extract the images and labels corresponding to 

digits 3 and 7

How to train a simple machine learning model



• Extracting the training images and labels 

How to train a simple machine learning model



• Extracting the test images and labels 

How to train a simple machine learning model



• After we have finished extracting the dataset, we will now start training 
the model
• First, we will initialize the model randomly

How to train a simple machine learning model



• We will train the model using a method called “gradient descent”
• “Gradient” is a vector that tells us the direction of the fastest increase of 

a multivariate function (function that takes several variables as input) 
• Negative of the gradient tells us the direction of the fastest decrease

• The gradient of a function f(w1, w2, …, wd) is defined as:

How to train a simple machine learning model

Each element is a partial derivative of f



• We will train the model using a method called “gradient descent”
• “Gradient” is a vector that tells us the direction of the fastest increase of 

a multivariate function (function that takes several variables as input) 
• Negative of the gradient tells us the direction of the fastest decrease

• The gradient of a function f(w1, w2, …, wd) is defined as:

How to train a simple machine learning model

Each element is a partial derivative of f

In the training problem, the function f will be the loss function 
and we will minimize the loss function by updating the model 
in the negative direction of the gradient



How to train a simple machine learning model
This can be done with the following steps 



How to train a simple machine learning model
First we initialize some important parameters, such as learning rate and error tolerance of the algorithm



How to train a simple machine learning model
The learning rate tells us how much the model will change from one iteration to another, the 
larger the learning rate is, the larger the change is



How to train a simple machine learning model

• The error tolerance tells us how much error we can tolerate while training our model. 
• At each step of the algorithm, the loss function decreases
• The algorithm will terminate when the loss function no longer decreases, which is measured 

by the error tolerance



How to train a simple machine learning model
Then we compute the gradient for our loss function, which is the mean-squared error loss.



How to train a simple machine learning model
Finally, we update the gradient in the negative direction of the gradient, weighted with a 
parameter called the learning rate.



How to train a simple machine learning model
We repeat the gradient computation and model update steps until the algorithm terminates  



How to train a simple machine learning model
Now we have finished training our model. The final step is to test its accuracy on the test set.  



How to train a simple machine learning model

Now we can execute the code, and wait for the program to terminate. 
When the program terminates, we will observe the results:



• Remember that the loss function is computed with respect to the training set, 
whereas the accuracy is measured with respect to the test set. 

• That is, we train the model by minimizing the loss function with respect to the 
training set and then use that trained model to test the accuracy with respect to the 
test set. 

• If our error tolerance is very very small, it means we are "fitting" our model too much 
to the training data. The model will work perfectly on the training data. For example, 
if we computed the accuracy with respect to the training data you would get very 
high accuracy, but the model will lose its flexibility to interpret new examples. 

• As a result, our accuracy on the test set will start to decrease, because the model 
hasn't seen these examples while training.

• This issue is called overfitting. 
• Ideally, we want our error tolerance to be small enough but not too small to cause 

overfitting. 

Comments



How are training sets labeled? 

• In this learning module, we learned how to train a linear regression 
model
• The training set contained both the images and their labels
• But, how are the training sets labeled?



How are training sets labeled? 
• Mostly created manually
• For example, the dataset creator can 

manually label each image



How are training sets labeled? 
• Mostly created manually
• For example, the dataset creator can 

manually label each image
• Another example is applications such as 

reCAPTCHA – for distinguishing humans 
from malicious software when someone 
wants to access a website - the main 
purpose is security, but it is also used for 
labling new images in the process

https://www.google.com/recaptcha/about/
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How are training sets labeled? 
• Mostly created manually
• For example, the dataset creator can 

manually label each image
• Another example is applications such as 

reCAPTCHA – for distinguishing humans 
from malicious software when someone 
wants to access a website - the main 
purpose is security, but it is also used for 
labling new images in the process

https://www.google.com/recaptcha/about/



How are training sets labeled? 

• Data labeling process is relatively easy for simple images such as 
digits, cars, dogs, but can be very costly and can take weeks in some 
other applications
• For example, in medical applications, the data may need to be 

labelled by a medical professional
• In applications where it is hard to label data, we can use different 

machine learning techniques that requires fewer or no labeled data
• These techniques use the similarity between different data points to make 

predictions



Machine Learning
• Overall, we can group machine learning algorithms into four main groups:

Supervised 
learning

Unsupervised 
learning

Semi-
supervised 

learning

Reinforcement 
Learning

Machine Learning

All of the data 
samples (images) 
in the training set 
are labeled
E.g., linear/logistic 
regression, deep 
neural networks

Some samples 
(images) in the 
training set are 
labeled, but the 
majority is unlabeled
E.g., graph-based 
techniques

None of the data 
samples (images) 
in the training set 
are labeled
E.g., clustering 
algorithms

Learn the optimal action strategy to 
maximize a reward function by 
interacting with the environment 
(trial and error)
Used for motion control in robotics, 
or to find the best strategy in games 
like chess, go etc. 



Limitations of Machine Learning

• Next, we will briefly talk about some important limitations and 
security challenges of machine learning 



Bias and Fairness
• As we have seen in our example, the training algorithm is highly dependent 

on the training dataset 
• If the training dataset has low quality, the performance of the training 

algorithm will be poor 
• For instance, suppose that the dataset is dominated by a certain digit while 

the other digit almost never appears 
• Then, the model will favor the samples that are dominant in the training 

set, and be biased against the underrepresented samples
• This can be a significant problem in real-world applications (e.g. an 

machine-learning-based tool to automate job application reviews)
• Fairness in machine learning is a very active area of research 



Security – Adversarial Attacks
• It is possible to create adversarial inputs to a machine learning system 

to cause the model to make a mistake
• These are done by adding structured noise to the image that can’t be 

perceived by the human eye but fools the machine learning system

noise

from https://openai.com/blog/adversarial-example-research/



Security – Adversarial Attacks
• Similarly, an adversary can fool speech recognition systems by adding 

structured noise to the speech waveforms

Example from https://nicholas.carlini.com/code/audio_adversarial_examples



Security - Backdoor Attacks
• An adversary can also poison the dataset by placing special “marks” on the 

images that may appear normal to humans but will cause the machine 
learning algorithm to make an error

• The rectangle marks placed on the stop sign causes the machine 
learning model to classify a stop sign as a speed limit

• This can lead to security and safety risks in applications such as 
autonomous driving, self-driving cars

https://arxiv.org/pdf/1707.08945.pdf

from https://arxiv.org/pdf/1708.06733v1.pdf

A Google Colab implementation is available at: https://towardsdatascience.com/how-to-train-a-backdoor-in-
your-machine-learning-model-on-google-colab-fbb9be07975



Next steps to complete the learning module

Can you implement the code described in this learning module on 
Colab and answer the following questions? 
1) How does the accuracy change by changing the learning rate?
2) How does the accuracy change by changing the error tolerance?
3) Can you plot the loss value per iteration and observe its behavior 
(increasing, decreasing)?
4) Try to run the program a few times, you may notice small changes in 
the accuracy results. Can you guess why we get different numbers 
when we run the same algorithm again? 



Next steps to complete the learning module

5) Try different pairs of digits, other than 3 and 7. 
• Are the results different? 
• Are some pairs harder to differentiate than others? Such as 3 and 8?
• Can you try to visualize the images?

6) Can you try to find an example (image) where the model predicts the 
wrong digit?
7) Can you now flip all the labels in the training dataset but not the test 
set? How is the accuracy affected? 



Next steps to complete the learning module

8) Bonus question: 
• In this example we learned how to train a linear regression model.
• The problem we studied here is called binary classification, which means 

that we want to classify a given data point (in our example an image) 
between two classes (in our example two digits). 
• For these types of problems (i.e., binary classification problems), a more 

suitable approach is called "logistic regression".
• For the details of logistic regression, please see pages 16-19 in:

http://cs229.stanford.edu/notes/cs229-notes1.pdf
• Can you try to modify this code for training and testing a logistic regression 

model and repeat the exercises?



Conclusion

• This concludes our learning module, thanks for your attention and I  
hope you enjoyed it!


