Effects of Selected Low Vapor Pressure –Volatile Organic Compounds (LVP-VOCs) on Atmospheric Photochemical Reactions Weihan Peng, Weihua Li, Lijie Li, Mary Kacarab, David Cocker

Background & Motivation

Volatile Organic Compounds (VOCs) play an important role in atmospheric photochemical oxidation, which results in the formation of Secondary Organic Aerosol(SOA) and ground-level ozone. Low Vapor Pressure Volatile Organic Compounds(LVP-VOCs) is a type of VOC with low volatility and it's an essential component in consumer products, like caulk remover, laundry detergent and paint stripper.

According to CARB, LVP-VOCs currently receive exemption from the VOC limits because of their relative lower vapor pressure and higher boiling point. However, recent study indicates that LVP-VOCs may have greater impacts on atmosphere that previous understood. Therefore, more qualitative and quantitative analysis of the availability of LVP-VOCs to atmospheric photochemical reactions should be conducted to provide more information on LVP-VOCs regulation.

Chemical Pathway of Ozone and SOA (Secondary Organic Aerosol) formation:

Methods & Facility

This research investigated atmospheric reactivity, SOA and ozone formation of LVP-VOCs. All photochemical reaction experiments were conducted with the advanced environmental chamber facility at University of California, Riverside(UCR) College of Engineering – Center for Environmental Research and Technology (CE-CERT). The atmospheric reactivity of pure LVP-VOCs, **Benzyl Alcohol**, **DEGBE**, **DBE-5**, and **DEGEE**, were evaluated with the presence of an anthropogenic surrogate mixture,

H2O2 and NOx (NO and NO2).

ОН	H ₃ CO OCH ₃	НО ^О О́СН₃ НС	o~~o~		
Benzyl Alcohol	Dimethyl Glutarate (DBE-5)	Di(ethylene glycol) ethyl ether DEGEE	Diethyl buty DE		
Gas and Particle phase Measurement					
GC-FID	Agilent 6890 gas chromatography flame ionization dectector		Sele		
SIFT-MS	SYFT Technologies Vocie20 Spec	G			
Nox Analyzer	Thermoenvrior	NO, NO2 a			
O3 Analyzer	Dasibi N	03			
SMPS	Home built scannir	Aerosol			
APM-SMPS	Kanomax 3600 Aeros	Aeros			
HR-ToF-AMS	Aerodyne High Resolution Time	Aerosol			
	Table 1. Instruments ι	used in UCR CE-CERT chamber			

College of Engineering - Center for Environmental Research and Technology (CE-CERT) Department of Chemical and Environmental Engineering, University of California, Riverside

- lene glycol l ether EGBE
- Targets
- ect hydrocarbons as phase VOCs
- and Nox concentration:
- 3 concentration
- size distribution and concentration
- sol particle density
- chemical composition

Experiments Results

reactors irradiated by UV.

EPA2006(A) Benzyl Alcohol + Surrogate 20.1 DBE-5 + Surrogate 160 EPA2027(A) 20.36 DEGEE + Surrogate 21.92 EPA2029(A) 40 EPA2030(A) DEGBE + Surrogate 18,87

Table 2. SOA characteristics

8.3	+	1.5	0.2
10.93	=	1.47	3.23
9.49	+	1.4	0.39
9.72	+	1.29	-0.26

SOA Composition Analysis

- Advised by Dr. David Cocker;

UNIVERSITY OF CALIFORNIA UNIVERSITY OF CALIFORNIA CE-CERT

Benzyl Alcohol in the chamber reactor forms significant amount SOA with the presence of surrogate and H2O2 compared to other LVP-VOCs or only surrogate. SOA(EPA2006) Chemical composition was characterized by High Resolution Time of

Helped by Weihua Li, Dr. Mary Kacarab, Dr. Lijie Li, Dr. Chia-Li Chen.