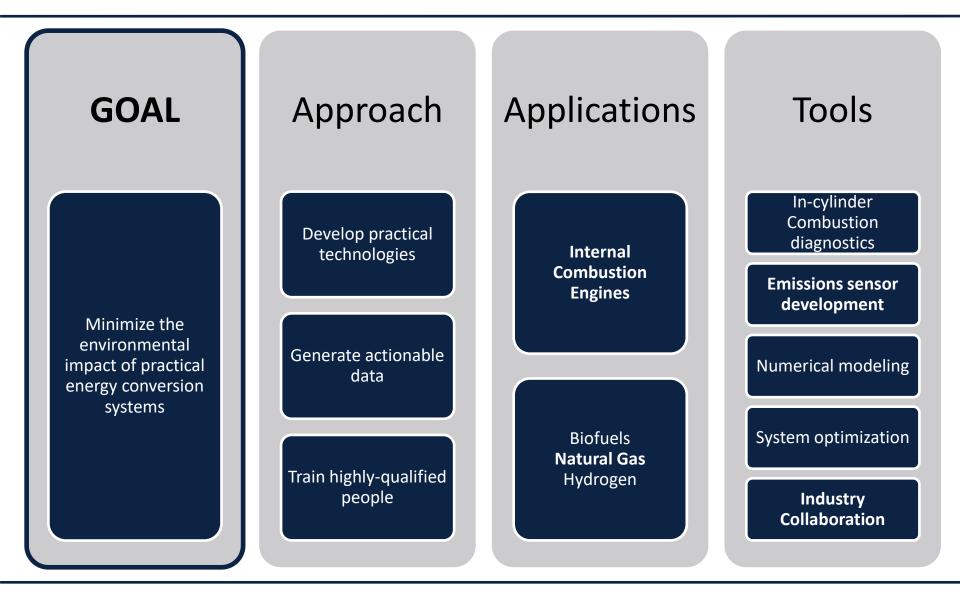


IN-USE GHG EMISSION LOGGING FOR HIGH-FIDELITY EMISSION INVENTORY CALCULATION IN LNG MARINE VESSELS

Jeremy Rochussen¹, Nicolas Jaeger¹, Patrick Kirchen¹ Ahmed Khan², Harly Penner²


¹Department of Mechanical Engineering University of British Columbia

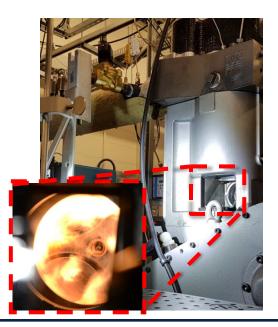
²Seaspan Ferries

THERMOCHEMICAL ENERGY CONVERSION LABORATORY

OUR LAB FACILITIES

Optical diagnostics & combustion lab:

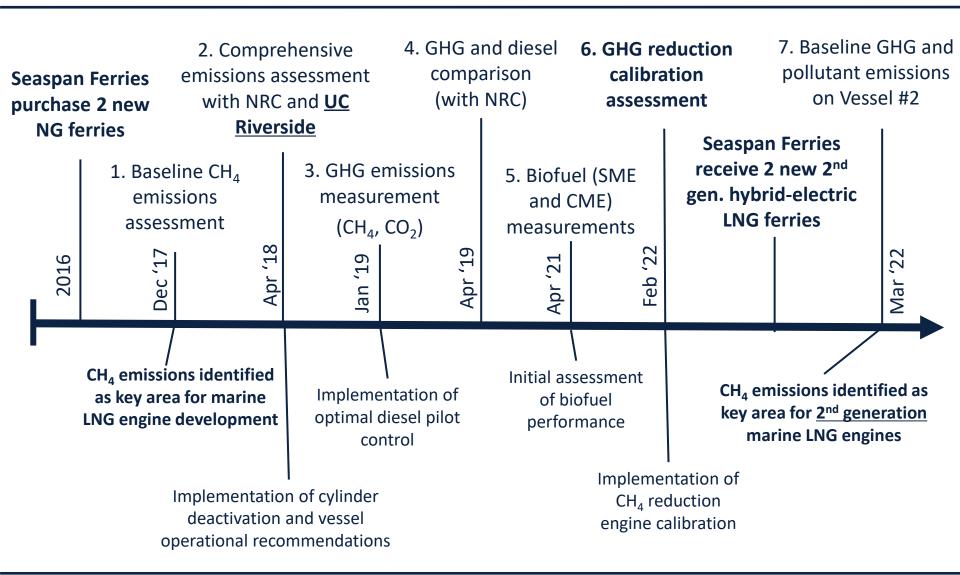
 In-house designbuild-test of optical absorption and scattering sensors

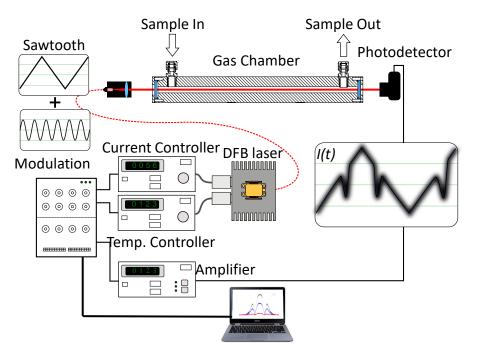

Heavy-Duty Test Engine:

- 14L NG directinjection test-bed
- Emissions reduction and optimization

Optically-accessible heavy duty engine:

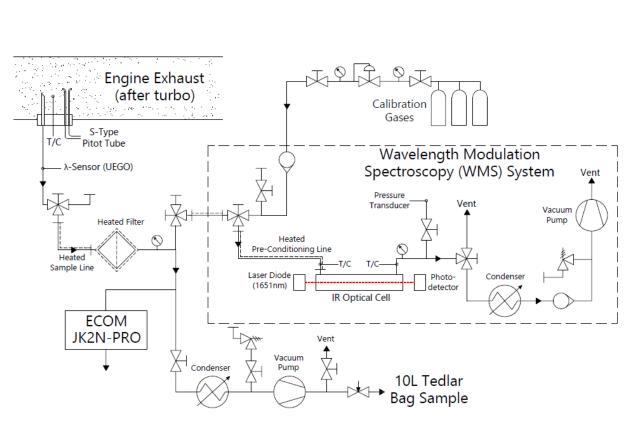
- 2L single cylinder with highspeed in-cylinder imaging
- Port or direction with NG/diesel/ biofuels/hydrogen


SEASPAN FERRIES & THE RELIANT


Propulsion Systems Vessel 2x Wärtsilä 9L34DF Engines 5000 GT RO-RO Cargo Ferry (2x4.3MW; 4-stroke; med. speed) 489' length x 86' beam LNG and Diesel Fuel Systems Capacity: 59 trailers Battery Bank (468 kWh) Tier II in diesel mode Tier III in gas mode Route(s) provide ~75% of the goods required . Vancouver Coquitlam by the industry and ~900k inhabitants of 7 78 Vancouver Island Nanaimo Richmond ŵ 1. Delta (Mainland) \rightarrow Nanaimo \rightarrow Delta White Ro Ladysmit Point Roberts Lynder 2. Delta \rightarrow Swartz Bay (Victoria) \rightarrow Delta Aarietta-Alderwood 2 vessels per route perform 2 roundtrips per day ŵ

METHANE MEASUREMENT

UBC WAVELENGTH MODULATION SPECTROSCOPY (WMS)


- IR absorption technique at 1651 nm
- 10Hz laser scan + <u>20kHz sinusoid modulation</u> enables very high noise rejection through frequency domain analysis (unfiltered and wet exhaust measurements)
- WMS is low cost, robust, specific, and fast method for CH₄ measurement
- Validated against FTIR, FID, GC, MS with CH₄ standards and exhaust (~100ppm to >10,000ppm)

Sommer, et al. Environmental Science and Technology. 2019

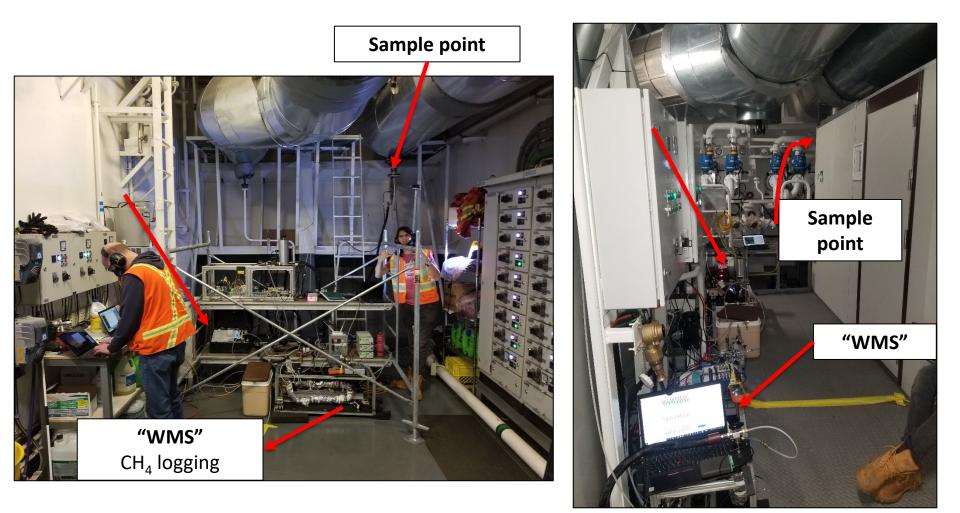
THE ON-BOARD EMISSION MEASUREMENT SYSTEM BEGAN TO GROW...

Pitot Tube: Exhaust flowrate

O2 + NOx: solid-state sensors

ECOM: Commercial instrument $(O_2, CO_2, CO, CH_4, NO_x)$

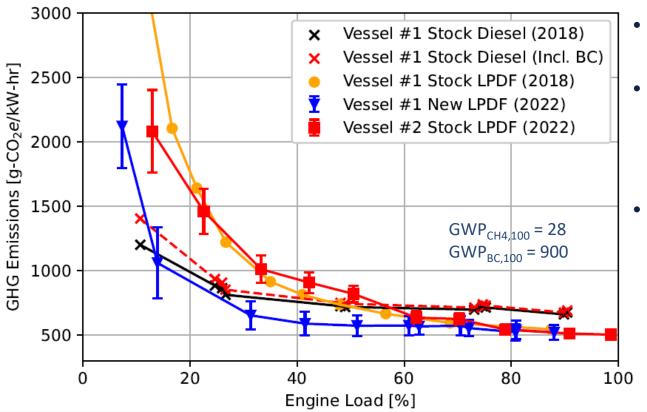
<u>WMS: Custom UBC instrument</u> (CH₄)


FTIR: Fourier Transform Infrared

Bag Sample: 10L samples of exhaust gas to be analyzed at UBC (FTIR, gas chromatograph) for quality control and additional emissions species

Calibration gases: Multiple on-line calibrations of instruments per measurement day

ON-VESSEL EMISSION MEASUREMENT



A 57% reduction in the total GHG emissions was obtained with no hardware modifications to the vessel (relative to the original LPDF engine)

- GHG reduction results from improved engine calibration and optimized vessel operations
- Equivalent to removing ~3000 cars (9.9kT CO₂e) from the road per year per vessel

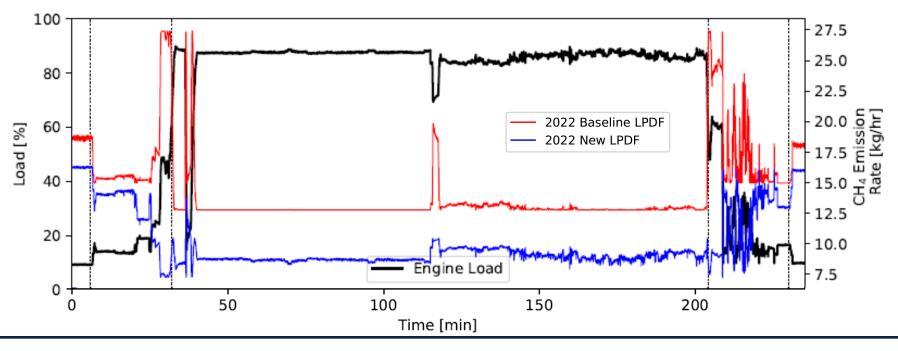
- Methane slip significantly reduced at load < 75%
- The new engine calibration is now offered as standard equipment on all new engines
- Air quality benefits of switching from diesel to NG: full load NOx and PM are reduced by 92% and 96%, respectively

Sommer, et al. Environmental Science and Technology. 2019 Peng, et al. Environmental Pollution. 2018 Sommer, et al. CIMAC 2019

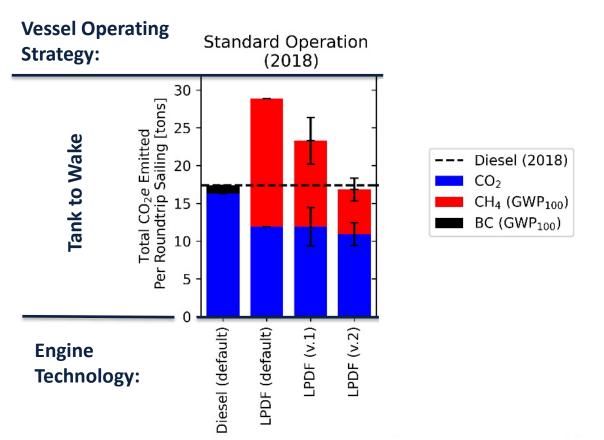
9

- 1. A 'pro-activist' approach:
 - Seaspan and UBC worked with the engine manufacturer to iteratively improve NG engine technology with supporting in-use emissions measurements
- 2. On-board emissions logging measurements during commercial sailings:
 - Approximately 50% of the achieved emissions reduction resulted from understanding and then improving the vessel operating strategies
 - Current marine emissions legislation and emission inventories do not represent the actual usage of marine propulsion systems

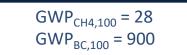
Marine emission factors are typically represented as a single value (e.g. g- CO_2e/kW -hr) using very simple legislated duty cycles + steady-state engine test-stand measurements


What are the consequences for legislation and fleet operators due to systematic errors in GHG emission inventories evaluated using coarse measurement methods?

• For this class of engine (constant speed main propulsion), the Marpol 'E2' test cycle is used to calculate emission factors (NOx technical code):


Engine Load	25%	50%	75%	100%
Weighting	0.15	0.15	0.5	0.2

Actual (measured) duty-cycle:



OSAR 2023 jrochussen@mech.ubc.ca

COMBINING VESSEL OPERATING STRATEGIES & BEST ENGINE TECHNOLOGY (SEASPAN RELIANT)

How an LNG-powered vessel is operated is as important to emissions as the engine technology that is installed

Rochussen, et al. Submitted to Fuel

Vessel	Fueling mode (software version)	Cycle-weighted Emission Factors [g-CO₂e/kW-hr] (% difference relative to certification cycle)				
		Certification	Actual	Actual		
		(IMO E2)	(2018 standard operation)	(2022 optimized operation)		
#1	Diesel (default)	639				
#1	LPDF (default)	708				
#1	LPDF (v.1)	675				
#1	LPDF (v.2)	568	Ţ	-		
#2	LPDF (default)	713		- -		

Note: Maximum GHG benefit for switching from diesel to LNG is approx. -25% CO₂e

Without considering vessel usage, a generalized emission factor can not be relied upon for decision making.

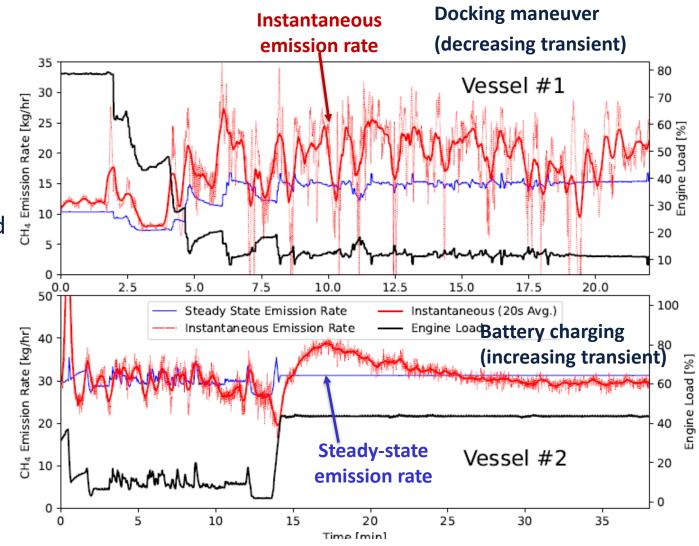
• Critical for LPDF LNG engines with a high sensitivity of emissions to engine load

13

Data collection and emission factor calculation methods:

- Legislated duty cycles + steadystate engine test-stand measurements
- 2) Actual duty cycles + steady-state in-use emissions measurements
- 3) Integration of instantaneous inuse emissions measurements

Increasing fidelity of calculated emission factor to environmental impact of vessel



INSTANTANEOUS VS. STEADY-STATE EMISSION FACTORS

 Accounting for increased CH₄ emission rates during docking resulted in an 11% increase in recorded CO₂e emissions

 Outlook: Development of a larger dataset of measured sailing activities is needed

- 1. There is significant low-hanging fruit for decarbonization in coastal marine applications
- 2. For dual-fuel LNG vessels, the operating strategies are as important as installed technology for real-world emissions reduction
- 3. Current marine emission inventories are not reliable data for fleet operators or policy makers
- 4. Improving these marine emission inventories requires larger datasets of emissions logging measurements enabled by robust, low-maintenance on-board systems

THANK YOU TO OUR SPONSORS & PARTNERS

