

OSAR Conference March 2023 Riverside, California

Evaluation of a miniaturized exhaust emission measuring system using an optoacoustic BC sensor and low-cost ambient sensors

Raptis I.¹, Ntampos I.², Kousias N.¹, Stylogiannis A.^{3,4}, Haedrich L.^{3,4}, Ntziachristos V. ^{3,4}, Ntziachristos, L. ¹

 $^{(1)}$ Aristotle University of Thessaloniki, Department of Mechanical Engineering $^{(2)}$ EMISIA SA

⁽³⁾ Technical University of Munich, School of Medicine, Chair of Biological Imaging ⁽⁴⁾ Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging

Presenting author email: raptisim@auth.gr

Objective

Evaluation of a miniaturized exhaust emission measuring system in real-world driving conditions using a PEMS device as reference

On-road measurement setup

RSENSE

Background

Decision PEMS were developed for type-approval of vehicles, as current regulations worldwide demand

- Observe the server of the s
- The major limitations regarding PEMS use beyond type approval are:
 - High cost of purchase (>150000 €) and use
 - High energy consumption
 - O Long installation time needed
 - Can not be installed on small vehicles (heavy and bulky)
 - Only regulated pollutants can be measured

There is a need to develop low-cost emission measuring devices for on board vehicle applications for large scale testing beyond type-approval!

PEMS system in use

EMISCOUT

BC optoacoustic sensor (1)

Key innovation Design Parameters Optoacoustic Sensor **Innovative Ellipsoidal** Low-cost commercial QTF **Sensor Chamber:** Laser Diode (LD) Ellipsoidal No resonator a=25 mr Cavity **Sensitive Quartz** • b=9.13 mm **Tuning Fork (QTF) for** ~75 mm sound detection **High sensitivity** ٠ **Compact optical** No contamination assembly ٠ ~35 mn **Basic Theory** Characterization **Corelation with MSS Optoacoustics (OA) is a reliable method for BC** Signal (a.u.) Very good detection correlation with a lab Sample Acoustic wave grade gold-standard instrument for BC (AVL MSS) Laser Optoacoustic signal source n Sensitivity: 2 µg/m³ 0 0,3 0,6 MSS (mg/m³) 0,9 1,2 Ultrasound Optical absorber detector RSENSE emisia EMISCOUT

BC optoacoustic sensor (2)

- Based on laser-diodes, available in different wavelenghts, depending on application
- It has been successfully tested in the lab under various environmental conditions (T,RH) and on-board two ship-campaigns
- > This is the first *portable battery-powered* version

	Current version	Potential
Weight	5 kg	2 kg
Dimensions	38x30x18 cm ³	20x20x10 cm ³
Manufacturing Cost	5000 €	1500 €

Portable BC Sensor configuration

Emiscout SEMS (1)

- Simple Emissions Measurement System (SEMS)
- Capable of measuring CO₂, CO and NO emissions using electrochemical and NDIR sensors
- The sensors were exposed to predetermined gas concentrations in the laboratory to evaluate their:
 - □ Sensitivity
 - □ Response time
 - □ Linearity
 - □ Repeatability
 - □ Cross sensitivity with other gases

Indicative results for sensor selection procedure

Detection	Technology Used	Measurement	$T_{0-90}(s)$	Resolution
Gas		Range		(ppm)
CO ₂	NDIR	0-20 %	2-3	<70
CO	Electrochemical	0-5000 ppm	20-30	<0.5
NO	Electrochemical	0-500 ppm	5-10	<0.3

Gas sensors specifications

EMISCOUT

Emiscout SEMS (2)

*Comparison between raw and corrected CO*₂ *signal*

Deviation decreased from 11.7 % to 7.4 %!

EMISCOUT

Sampling methodology

- A custom heated line was used to avoid water condensation (70° C)
- A battery was used exclusively for the heated line
- A dilution ratio of 3.5:1 was used after the heated line. The diluted sample was distributed to the two devices

Dilution Unit

Exhaust pipe and heated line

Experimental layout

On road experiments - Overview

Objective: performance assessment under real-driving conditions

- Pollutants measured: (BC, CO₂, CO, NO)
- Various routes and driving styles were tested

Trip	Duration	Average Speed	Route	Driving style
	(Km)	(Km/h)		
Diavata	26.4	22.6	Urban-Rural-Motorway	Smooth
Thermi_1	31	39.5	Urban-Motorway	RDE Compliant
Hortiatis_1	30.8	36.7	Rural-Motorway	Smooth
Thermi_2	27.9	33.5	Urban-Motorway	RDE Compliant
Hortiatis_2	29.9	37.1	Rural-Motorway	Aggressive
Thermi_3	35.8	51.9	Urban-Motorway	RDE Compliant
Thermi_4	28	32.5	Urban-Motorway	RDE Compliant
Diavata_short	22.4	35.1	Urban-Rural-Motorway	RDE Compliant

On-road trips parameters

Experimental description

Parameter	Units	Value
Fuel		Gasoline
Capacity	cm ³	1498
Power	kW	81
Mileage		15000
Year		2022
Emissions		EURO6
Type approval		WLTP
Mass	kg	1750
Injection	-	Indirect injection

Vehicle specifications

Timeseries - Emiscout

- The CO₂ sensor has good responsivity
- In dynamic conditions when the exhaust is throttled some overshoot is observed, due to change in dilution conditions
- The NO sensor follows the trends adequately
- The CO sensor follows the trends but lags behind in second-by-second changes

Time responses - Emiscout

- CO₂ : comparable time response and level with PEMS
- NO : follows the trend with a slight lag and overall deviation 10-15%
- CO : detect peaks, but underestimates them, mean deviation of ~40-50%

Correlation plots - Emiscout

- Typical 'hysterisis' loop for CO₂
- Strong indications of overall a linear relationship for all 3 sensors
- Especially CO, despite having a slow response has a perfectly linear response

BC (OptA sensor) vs PN (PEMS)

Time response/Correlation optA sensor

Fast time response, comparable to the PEMS PN

Excellent correlation indicating that BC represents a constant contribution to PN

EMISCOUT

RSENSE

Conclusion and next steps

Key takeaways:

- SEMS of satisfactory operation for screening high emitting vehicles
- At least 30 minutes of continuous measurement on battery is successfully performed
- Humidity condensation occurred in some trips, further development of sampling system & optimisation of DR is needed
- For large on-board measuring campaigns, SEMS sensors need to be replaced in regular intervals (TBD)

Next steps:

Further miniaturization

> Optimize sampling system

L-vehicle measurements (LENS project)

➢ Integration of HC sensor

Thank you for your attention!

EMISCOUT

Contact: raptisim@auth.gr

Acknowledgments

This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T2EDK-01576) and the European Horizon project RSENSE (grant number 862811)

Back-up slides

Why only BC and no NO₂ measurement – optA sensor

emisia

- The 450 nm LD laser that the optA sensor uses is also capable of detecting NO₂
- Since the measurements were done with a gasoline vehicle we didn`t expect significant emissions of NO2
- PEMS measurement of NO₂ verifies that there was no contribution of NO2 and thus the correlation between PN and BC is confirmed