A COMPREHESIVE EVALUATION OF NEW LOW NOx 1065 COMPLIANT PEMS

Kent C. Johnson, Tianyi Ma (Jerry), Thomas D. Durbin, and Georgios Karavalakis

Bourns College of Engineering-Center for Environmental Research and Technology, University of California, Riverside, CA

UCRIVERSIDE NO_x Emissions: Further Reductions

Project Overview

Determination of new Low NO_x PEMS Measurement Allowance

- The goal of this project is to validate a Monte Carlo model of error surfaces using an on-road reference laboratory.
- Similar project was performed in 2007 (gaseous PEMS) and 2009 (PM PEMS) using UCR's Mobile Emissions Laboratory (MEL). 0.45 g/hp-hr delta
- UCR's Mobile Emissions Laboratory (MEL) was upgraded to perform this validation
 - New Horiba MEXA ONE raw and dilute emissions bench
 - Enhanced measurements include
 - Dilute ultra-low NO_x bench
 - Raw and dilute ovens for hot NO_x measurements
 - NO_x and NO measurements for both raw and dilute
 - Quantum cascade laser (QCL) for raw N₂O and NH₃ measurements

PEMS Selected

Utilized all 1065 approved gas PEMS manufactures (Horiba, AVL, and Sensors)

- Each was specifically upgraded for Low NOx measurements
- Improved thermal management for lower zero drift and better signal processing

Horiba

Routes Used for the Validation

UC RIVERSITY OF CALIFORNIA

elevation change

PEMS Installation

MEL reference bench and Hot oven samplers

Each PEMS was installed in the sleeper area of the Class 8 truck Exhaust flow meter location for each PEMS. Each PEMS was tested individually (ie they were not all tested at one time).

> Temperature Sensor To record the boundary layer temperature between the surface of the PEMS and the cabin temperature.

Test Vehicle Specifications

Company	Detroit diesel corporation		
Engine family	KDDXH14.8EAD		
Engine model	DD15		
Model year	Apr 2019		
Displacement (liters)	14.8		
Fuel type	Diesel		
Features	Direct Injection, Turbocharger		
Aftertreatment	Change air cooler (CAC) Exhaust gas recirculation (EGR) Oxidizing catalyst (OC) Periodic trap oxidizer (PTOX) Selective catalytic reduction, urea (SCR-U) Ammonia oxidation catalyst (AMOX)		
Advertised horsepower at 1650 rpm	505		
Fuel rate at adv. horsepower (mm3/stroke)	291.0		
Certified NOx (FTP)	0.12		

BIN1: Deltas

The NO_x emission deltas varied for all three PEMS from + 3 to -10 g/hr.
NO_x emissions below 7.5 g/hr (BIN 1 limit) deltas were less than 0.75 g/hr.

BIN1: Rel Error

Emission Rate was less than 25 g/hr

The relative error was below 10% at < 7.5g/hr for all PEMS
The relative error was close to 10% above 7.5 h/hr for PEMS 1 and 2, but
PEMS 3 was around 40%. Errors for PEMS3 were in the idle exhaust flow

BIN2, 3: Deltas

Emission Rate was less than 0.8 and mostly below 0.4 g/hp-hr

PEMS deltas ranged 0.06 to -0.05 g/hp-hr for emissions up to 0.8 g/hp-hr
NO_x emissions PEMS 3 showed a consistent low bias.

BIN2, 3: Rel Error

Emission Rate was less than 0.8 and mostly below 0.4 g/hp-hr

The emissions below the 0.05 g/bhp-hr reference were less than 10% for
PEMS 1 and 2. PEMS 1 and 2 were mostly lower than 10% above 0.05 g/bhp-hr
PEMS 3 showed a low bias above and below 0.05 g/bhp-hr reference

UCRIVERSIDE Low NOx Data: BIN 1 Deltas

>All PEMS showed results within 0.75 g/hr for emissions less than 4 g/hr

Low NOx Data: BIN 1 Rel Err

Emission Rate was less than 4

 $1 \, \text{g/hr}$

and mostly below

□ PEMS 3 △ PEMS 2 ○ PEMS 1

>All PEMS showed results 10% for emissions less than 4 g/hr

UC RIVERSITY OF CALIFORNIA UC RIVERSIDE

Low NOx: BIN2,3 Deltas

PEMS 1 and 2 deltas were mostly withing or at 0.005 g/hp-hr
PEMS 3 showed some deltas as high as 0.04 g/hp-hr

UC RIVERSITY OF CALIFORNIA UC RIVERSIDE

One Day Is Not Enough

Emission Rate was less than 0.2 and mostly below 0.1 g/hp-hr

PEMS 2 was the only PEMS that was within 10% for most emission rates below 0.2
PEMS 3 showed a relative error ranging from -15% to -35%

Summary of Cabin and Ambient Temperatures

UC RIVERSITY OF CALIFORNIA

PEMS 1 was subjected to a slightly lower cabin temperature (5 deg C lower) compared to PEMS 2 and 3

Summary of Drift Conditions

Drift Statistics

Low NOx PEMS are expected to show significant improvements over previous PEMS if drift is around 0.2 ppm

UCRIVERSIDE PEMS vs MEL raw < 10 ppm varies

 Two PEMS showed a poor < 10 ppm comparison to the reference
One PEMS agreed well

Summary

Low NO_x PEMS were compared to a mobile reference laboratory over varying routes and environmental conditions

Two PEMS performed around 10% above and below the 2027 standard (up to 0.8 g/hp-hr).

One PEMS had performed 20-40% above and below the 2027 standard. Errors seemed to result from an exhaust flow measurement bias.

The two PEMS BIN2 and 3 deltas were within 0.005 g/hp-hr below the 2027 standard and one was around 0.015 g/hp-hr

It appears these new low NO_x PEMS can be utilized to quantify emissions at and below the 2027 standard.

Acknowledgement

UC RIVERSITY OF CALIFORNIA

We acknowledge funding from the Engine Manufacturers Association (EMA)

Truck & Engine Manufacturers Association®

We thank the in-kind access to the PEMS equipment, their calibration prior to testing, and inkind on the group testing support from Cummins (AVL PEMS), Horiba. and Sensors

We thank the technical discussions and contributions from the California Air Resources Board, South West Research Institute, South Coast Air Quality Management District, Environmental Protection Agency, SGS, EMA, and the various industry partners of the Emissions Measurement Testing Committee (EMTC)

EPA 3 BIN Analysis Information

UCR performed EPA 3BIN analysis in the following way:

(1) Determine the mean mass percent of CO₂ of a window, \bar{w}_{CO2win} , using the following equation:

$$\bar{w}_{\rm CO2win} = \frac{\bar{m}_{\rm CO2win}}{\dot{m}_{\rm CO2max}}$$

Where:

 $\bar{m}_{\rm CO2win}$ = mean mass rate of CO₂ over the valid window (300 seconds average moving window).

 $\dot{m}_{\rm CO2max} = e_{\rm CO2FTPFCL} \cdot P_{\rm max}$

 $e_{\text{CO2FTPFCL}}$ = the engine's FTP FCL CO₂ emission value.

 P_{max} = the engine family's maximum power determined according to the torque mapping test procedure defined in 40 CFR 1065.510.

Bin		Mean mass percent of CO ₂
Idle		$\bar{w}_{\rm CO2win} \leq 6 \%$
Low load	M	$6 \% < \bar{w}_{\rm CO2win} \le 20 \%$
Medium/high load		$\bar{w}_{\rm CO2win} > 20 \%$
	 1	

EPA 3 BIN Analysis Information

Parameters we used for EPA 3 BIN analysis:

- eCO2 FTP FCL (the engine's FTP FCL CO2 emission value) = 514 g/hp·hr
- Pmax = 505 hp from engine label
- CARB 2031 Standard (435k mile)
 - Bin 1: 7.5 g/hr
 - Bin 2: 0.075 g/bhphr
 - Bin 3: 0.030 g/bhphr

	EPA CERTIFICATE OF CONFORMITY KDDXH14.8EAD-003 CO2		
In			
g/bhp-hr	FTP	SET	
STD	555	460	
FCL	(514)	454	
FEL	529	468	
CERT	504	440	