
Study on Analysis and Prediction of Real-world Emissions from Direct 
Injection Gasoline Vehicle Using On-road Driving Emission 
Measurement Data

Susumu (Mu) SATO, Jiaxin CHEN,
Chanpaya EANG (Tokyo Institute of Technology)
Kotaro Tanaka (Ibaraki University)
Takeshi Tange (NGK Spark Plug Co., LTD)

2023 OSAR Conference
@ CE-CERT, UC Riverside



2

Research Background

 “How much” and “Where” air pollutant are emitted?
= “Hot Spot” or not? 

 Evaluation of the roadside real-world emission using on-board 
emission measurement system

 In the future, there will be a need for a method of grasping the real-world 
emissions using only vehicle information obtained through OBD port in real time 
without direct measurement of emissions. 

For the real-world emissions evaluation for GDI vehicle,
1. Analysis of NO and NH3 emission behavior by on-road measurement on general 

roads using gasoline passenger vehicle
2. Construction and verification of emission prediction model by deep learning using 

vehicle OBD information obtained 
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Test Vehicle and Sensor-based Emission Measurement System
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Ref: Yang et al., Science of the Total Environment, Vol. 640-641, p. 364-376, 2018
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Emissions Measurement Sensors

PM Sensor

NO Sensor

NOx Sensor

Tail pipe

NOx sensor detected NH3 as well as NOx
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NH3 Concentration Calculation

• Signals obtained from NOx 
sensor include those derived 
from NO and NH3.

• Potential sensor for NO can 
measure the NO concentration.

Potential sensor for NO,NH3NOx sensor (NCEM) NH3 sensor for diesel

When NOx sensor and potential sensor for NO are used, 
ammonia emitted from gasoline vehicles will be measured.

Sensor signals were compared with those obtained by FT-IR and laser-based 
measurement system.

Not measured

[NOx sensor] –
[Potential sensor for NOx] 
≈ NH3

Ref: K. Tanaka et al., the 10th Annual International PEMS Conference (2021)

Ref: K. Tanaka et al., Society of Automotive Engineers of Japan, 2020 Annual Autumn Conference 
Proceedings, No. 232 (in Japanese)

3 0.9
NOx NO

NH
C CC −

=

Division by 0.9 is used to 
calibrate the sensor sensitivity.
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Analyzed emission
NO, NH3

Samling frequency 10 Hz

Number of tests 10 times

Fuel Gasoline (H/C = 1.8)

9 times for learning
(Cold & Hot)

1 time for validation
(Only Cold)

Tokyo Institute
of Technology

Test Routes, Experimental Conditions
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Average Emission
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NO Emission Analysis

Ref: Sato et al., 2022 PEMS Conference
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NH3 Emission Analysis

Ref: Sato et al., 2022 PEMS Conference
Ref: Barbier et al., Applied Catalysis B  Environmental, Vol. 4, p. 105-140, 1994

CO + H2O  CO2 + H2
2NO + 2CO + 3H2 2NH3 + 2CO2
2NO + 5H2  2NH3 + H2O
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Analysis of NO, NH3

Input 

LSTM layer

Dense

Dropout layer

Dense

Dense 

Output

LSTM-based prediction model Validation and 
improvement of model

Change of learning conditions

Flowchart of Emissions Prediction
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Input 

LSTM layer

Dense

Dropout layer

Dense

Dense 

Output

Prediction model

Configuration of LSTM
https://medium.com/@ottaviocalzone/an-intuitive-
explanation-of-lstm-a035eb6ab42c

LSTM (Long-Short Term Memory)

https://medium.com/@ottaviocalzone/an-intuitive-explanation-of-lstm-a035eb6ab42c
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Behavior Parameter

Engine

Engine load [%]
Engine speed [rpm]

Engine coolant temperature [ºC]

Intake Manifold Abs. Pressure [kPa]

Timing advance [deg relative to #1 
cylinder]
MAF air flow rate [g/s]
Throttle position [%]

OBD Fuel/Air equivalence ratio [-]

O2S1WR Lambda [-]

Vehicle
Vehicle speed [m/s]
Acceleration [m/s2]
Jerk [m/s3]

Driver Pedal position D [%]
Road condition Road gradient [-] 

Input Parameters for NO Prediction
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Feature importance
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼𝐹𝐹(𝑥𝑥𝑛𝑛) = 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥𝑛𝑛 − 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥𝑛𝑛

Where,
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥𝑛𝑛: Root mean squared of the model when the parameter 

is omitted from training
𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥𝑛𝑛: Root mean squared of the model when all parameters 

are trained

Number of epochs 32

Number of timesteps 10, 25, 50, 100, 200, 400, 600
(1.0, 2.5, 5.0, 10, 20, 40, 60 sec)

Batch size 20
Learning rate 0.001
Optimizer Adam
Verbose 2

Loss function Mean squared error (MSE) and Root mean 
squared error (RMSE)

Learning Conditions

Feature Importance and Learning Conditions
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10 timesteps
RMSE=4.605

200 timesteps
RMSE=4.117

600 timesteps
RMSE=3.097

Results of NO Prediction

600 timesteps
Model 2
RMSE=2.697

The parameter of “Engine Coolant Temperature” has 
been omitted (Lowest feature imporatnce)
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Importance of Longer Timestep for the LSTM Learning

 NOx emission mechanism for gasoline vehicle equipped with TWC

Fuel cut  Lean condition  Change of TWC state  Fuel injection  NOx emission

 Longer timestep is required for the prediction of long-time phenomenon
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10 timesteps
RMSE=13.31

200 timesteps
RMSE=20.85

600 timesteps
RMSE=12.01

Results of NH3 Prediction
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Summary

1. NO emission was found especially in lean condition where the excess air ratio is close 
to 1.

2. NH3 emission increased in rich condition. In rich condition, there is not enough 
oxygen for complete combustion and CO was formed. NH3 was generated from this 
CO. 

3. For the emission prediction with LSTM method, by using different timesteps samples, 
it was found that after 200 to 600 timesteps, the prediction accuracy increased for 
both NO and NH3 prediction. By testing different timesteps, the suitable length of the 
inputs can be verified. Longer timesteps tend to provide more information for 
prediction model to learn from.

4. In addition, feature importance was also calculated. Some parameters yielded 
negative importance. It can be said that those parameters should be omitted from 
the inputs to avoid overfitting. This method has proven effective in improving the 
model accuracy.
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Thank You for Your Listening
Susumu (Mu) Sato

Tokyo Institute of Technology
sato.s.ay@m.titech.ac.jp
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