# Assessment of an On-Board FT-IR Gas Measurement Systems for Future Heavy-Duty Regulations



OFS PEMS PRESENTATION

Philipp Jakubec

| COMPANY      |                   |
|--------------|-------------------|
| PRESENTATION | OFS / PEMS – PRES |
| DATE         | MARCH 2023        |



TEST CELL TECHNOLOGY consistently advancing

IAG PRÜFSTANDSTECHNIK GMBH INDUSTRIESTRASSE 322 AUSTRIA WEIKERSDORF NOE A-2722 +43 2622 41712/0 office@iag-ng.at www.iag-ng.at

#### **Presentation outline**

#### Topics

PRESENTATION OFS / PEMS – PRES MARCH 2023

| 01    | Who is IAG-ng                                    |
|-------|--------------------------------------------------|
| 02    | Technical details OFS                            |
| 03    | Technical details FTIR                           |
| 04    | Comparison Lab devices                           |
| 05    | Comparison PEMS devices                          |
| 06    | Summary                                          |
| 07    | Conclusions                                      |
|       |                                                  |
| RDE t | est in October 2019: Tested in Austria up to 155 |



RDE test in October 2019: Tested in Austria up to 1550 meters above sea level.

The OFS is the first onboard FTIR system that is as light and compact as other OBD systems and therefore can be mounted on hitches/tow balls or inside the test vehicle.



### Who is IAG-ng?

PRESENTATION OFS / PEMS – PRES MARCH 2023



01 Founded 2000 as part of IAG, own company since 2019

02 Located in Austria, 60km south of Vienna

**03 35 Employees and Growing** 

4 Mainly FT-IR and TDLS (NH<sub>3</sub> & H<sub>2</sub>O) focused

**05 First FT-IR Bench introduced 2003** 

06 Over 200 FT-IR Benches Worldwide

07 First NH<sub>3</sub> Analyzer introduced in 2017

<u>08 over 100 NH₃ Analyzers Worldwide</u>

09 Strong focus on R&D: H<sub>2</sub> Mass Spec Bench



PAGE

PRESENTATION OFS / PEMS – PRES MARCH 2023

| 01 | Dimension 23.6"x19.7"x15.7"                  |
|----|----------------------------------------------|
|    |                                              |
| 02 | Weight 110 lbs.                              |
|    |                                              |
| 03 | System pressure 800 mbar                     |
|    |                                              |
| 04 | 3-12 l/min regulated flow                    |
|    |                                              |
| 05 | Swagelok quick connect for span & zero gas   |
| 00 |                                              |
| 06 | Maximal inlet pressure 6 bar                 |
| 07 |                                              |
| 07 | Up to 5m heated line Winkler quick connect   |
|    |                                              |
| 08 | Power supply 115V AC                         |
| 00 | Demorranties 25014/ (without bested line)    |
| 09 | Power consumption 250W (without heated line) |
| 10 | Optional 160 Ah battery                      |
| 10 |                                              |
| 11 | -15°C to +40°C; up to 1800 above sea         |

**Benefit:** Due to our new design and the given measurement physics of the FTIR principle, it is not necessary to carry any additional operation or calibration gases in the passenger compartment of the vehicle to be tested.



### FTIR: Technical details

**General spectrometer information** 

|    | 01 | Model 2030G                                       |
|----|----|---------------------------------------------------|
|    | 02 | 70 cm <sup>3</sup> stainless steel gas cell       |
|    | 03 | 5 Hz analysis frequency                           |
|    | 04 | 5.11 m optical path length                        |
|    | 05 | Spectral range 500-6000 cm <sup>-1</sup>          |
|    | 06 | Detector 0.25 mm LN <sub>2</sub> cooled MCT       |
|    | 07 | Gold plated mirrors with MgF <sub>2</sub> coating |
| ÷. | 08 | Windows ZnSe                                      |

#### 09 250 ml liquid nitrogen reservoir

#### Improvements Rev. G:

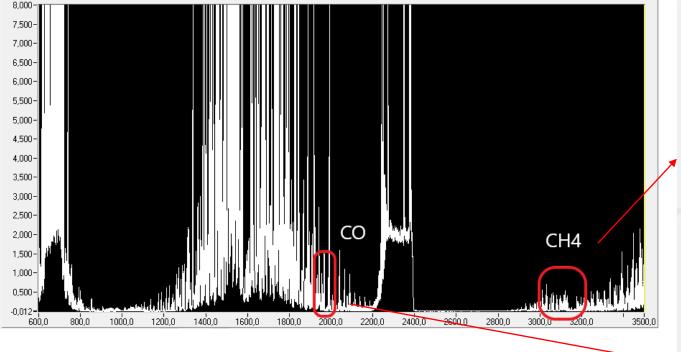
- User replaceable HeNe Laser
- Temperature controllers integrated to boards.
- Improved air flow
- Updated power supply assembly
- IR source without fan cooling

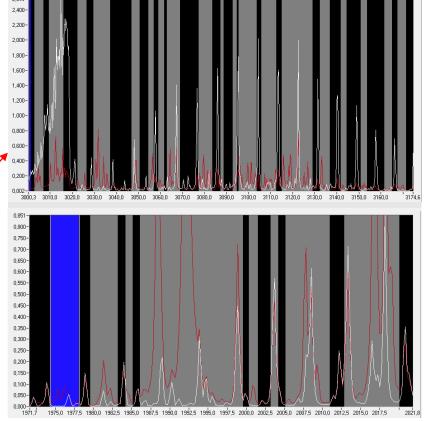


PAGE 04

## **OFS System Layout**

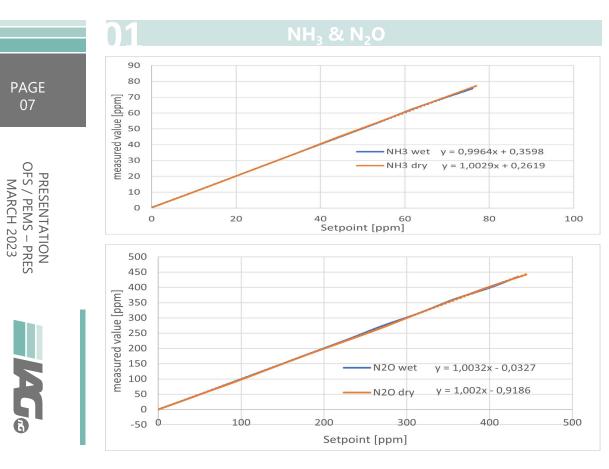
**Gas-flow schematic** 


|                                                 | 01       | Gas Inlet                                                                                                                                                                                          |             |                |              |    |  |
|-------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------------|----|--|
| PAGE                                            | 02       | Heated Filter block                                                                                                                                                                                | CalGas / N2 |                |              |    |  |
| 05                                              | 03       | Filter                                                                                                                                                                                             | 02          | 7              |              | FM |  |
| 9 T                                             | 04       | Pressure regulator (P. max 6 bar)                                                                                                                                                                  | SP1 01 04   | N <sub>2</sub> |              | 05 |  |
| PRESENTATION<br>OFS / PEMS – PRES<br>MARCH 2023 | 05       | FTIR spectrometer                                                                                                                                                                                  |             |                | <br><b>5</b> | 07 |  |
| ITATIOI<br>MS – PF<br>H 2023                    | 06       | Flow measurement                                                                                                                                                                                   |             |                |              |    |  |
| RES                                             | 07       | Condensate trap                                                                                                                                                                                    |             |                |              |    |  |
| in l                                            | 08       | Pump                                                                                                                                                                                               |             |                |              |    |  |
|                                                 | 09       | Exhaust                                                                                                                                                                                            |             |                |              |    |  |
| ß                                               |          | <b>g concept:</b> Based on vacuum extraction pump, allows<br>low extraction of 5 l/min at an altitude of 1800 m and 12<br>sea level.                                                               |             |                |              |    |  |
|                                                 | an NH3 t | <b>c</b> : The entire gas path of the OFS is 100 cm <sup>3</sup> . This leads to<br>t <sub>10-90</sub> time of less than 2 sec. including a 2 m heated line.<br>s made in accordance with EPA1065) |             |                |              |    |  |

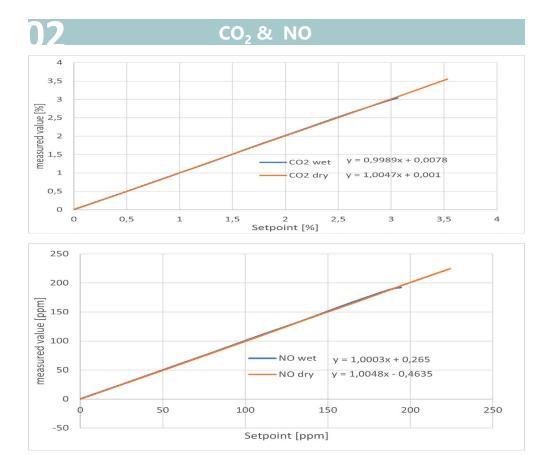

#### FTIR Line Shape Calibrations






| Lines relevant to the evaluation regions for the standard     |
|---------------------------------------------------------------|
| components: 3% CO, 9% CO $_2$ , 550 ppm NO, 500 ppm NO $_2$ , |
| and 500 ppm $CH_4$                                            |






CH<sub>4</sub> (top) and CO (bottom) match well Only black areas are used White: Calibration Gas (CO or CH<sub>4</sub>) Red: spectrum of humidified mixed gas (left)

#### Accuracy: Wet & Dry



The accuracy is not influenced by 20% water, NO,  $CO_2$ ,  $NH_3$  and  $N_2O$  are shown as examples



Calibration gas was humified by a HovaCal and a 2m heated line was used as a connection to the OFS.

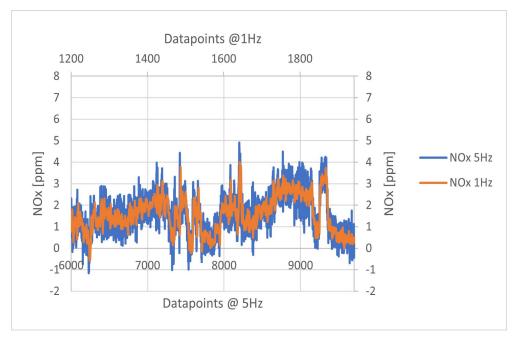
| Б        |
|----------|
| <b>ר</b> |
| 6        |

## Zero and dry reference gas

|                      | 300 ppm $NH_3$ | 500 ppm NO | 500 ppm $NO_2$ | 500 ppm CH <sub>4</sub> | 200 ppm N <sub>2</sub> O |
|----------------------|----------------|------------|----------------|-------------------------|--------------------------|
| Zero Point Drift 1h: | 0.06 ppm       | 0.1 ppm    | 0.09 ppm       | -0.07 ppm               | 0.05 ppm                 |
| Zero Point Drift 8h: | -0.07 ppm      | 0.09 ppm   | -0.06 ppm      | 0.04 ppm                | -0.02 ppm                |
| End Point Drift 1h:  | -0.21 ppm      | 0.18 ppm   | 0.18 ppm       | -0.14 ppm               | 0.15 ppm                 |
| End Point Drift 8h:  | 0.35ppm        | 0.22 ppm   | 0.23 ppm       | -0.20 ppm               | 0.27 ppm                 |

# **2** Zero and wet (8% H<sub>2</sub>O) reference gas

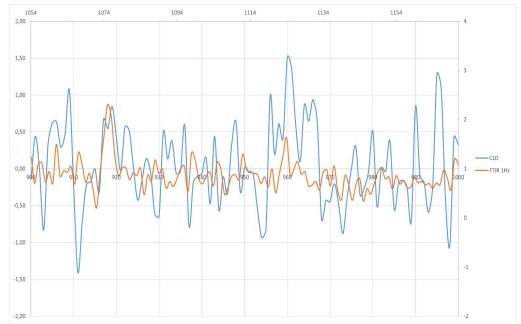
|                      | 300 ppm NH <sub>3</sub> | 500 ppm NO | 500 ppm NO <sub>2</sub> | 500 ppm CH <sub>4</sub> | 200 ppm N <sub>2</sub> O |
|----------------------|-------------------------|------------|-------------------------|-------------------------|--------------------------|
| Zero Point Drift 1h: | 0.12 ppm                | 0.15 ppm   | -0.04 ppm               | 0.11 ppm                | 0.08 ppm                 |
| Zero Point Drift 8h: | -0.10 ppm               | 0.11 ppm   | 0.05 ppm                | 0.08 ppm                | 0.07 ppm                 |
| End Point Drift 1h:  | 0.08 ppm                | 0.12 ppm   | -0.11 ppm               | 0.09 ppm                | -0.20 ppm                |
| End Point Drift 8h:  | 0.14ppm                 | 0.17 ppm   | -0.12 ppm               | -0.09 ppm               | -0.14 ppm                |


#### Apparent FTIR Noise

PAGE 09

PRESENTATION OFS / PEMS – PRES MARCH 2023

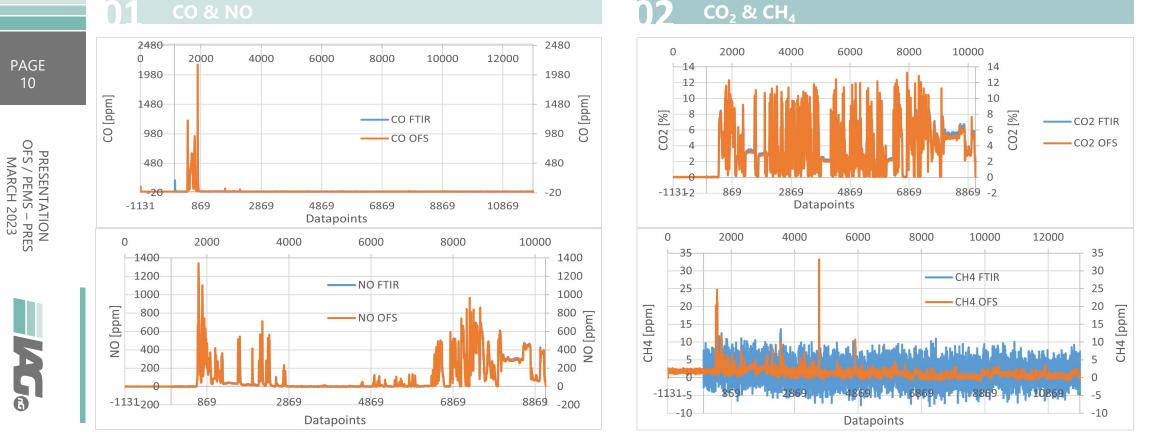






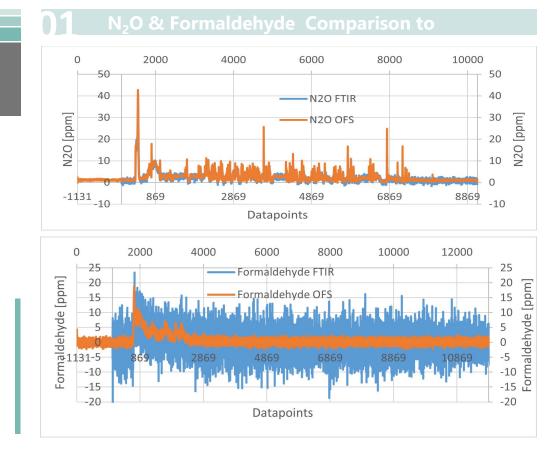

Part of NOx values of WHVC, same raw data used to create 5Hz and 1Hz plot

This comparisons were part of a test made on a MAN truck at the TU Graz (Austria) on a chassis roller test bench on tailpipe position. A SCR cat was used.


#### **1Hz OFS and 1Hz CLD**



1Hz OFS and 1Hz CLD (Horiba Mexa), zero emission point of WLTC cycle

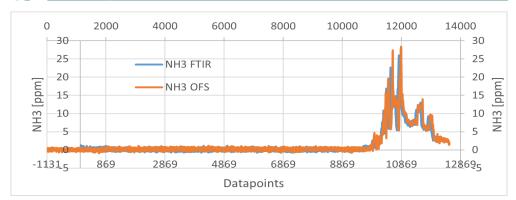

#### Comparison to lab FTIR

The tests were performed on a MAN truck at the TU Graz (Austria) on a chassis roller test bench on tailpipe position fitted with a SCR cat. The lab FTIR was a IAG Versa06 fitted with a MKS FTIR.



OFS tracks NO, CO, CO<sub>2</sub> and CH<sub>4</sub> well at peaks and zero emission parts of WHVC

#### Comparison to lab FTIR




MAN Euro VI truck fitted with a SCR cat was evaluated over a WHVC.

The OFS and the FTIR were mounted at the tailpipe position downstream of all after treatment systems (SCR and DPF). The sample point was split by a T-piece.

*The tests were performed at the Technical University in Graz (Austria)* 

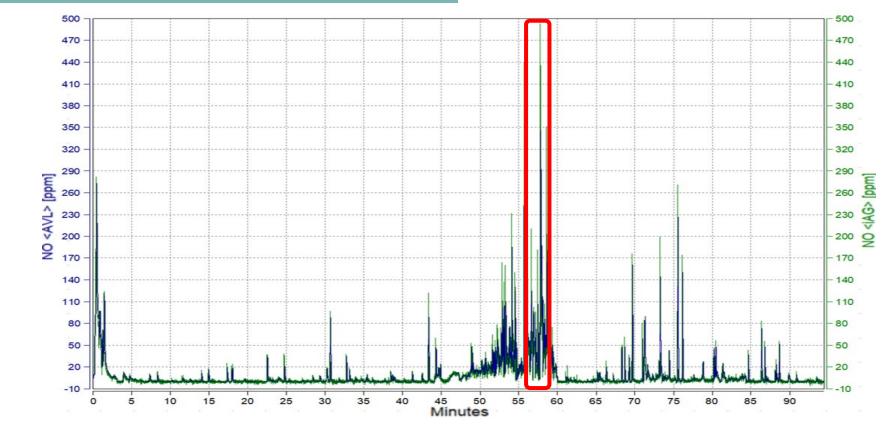
#### 7 NH₃ Comparison to Lab FTIR



OFS tracks N<sub>2</sub>O, NH<sub>3</sub>, and Formaldehyde well at peaks and zero emission parts of WHVC

PAGE

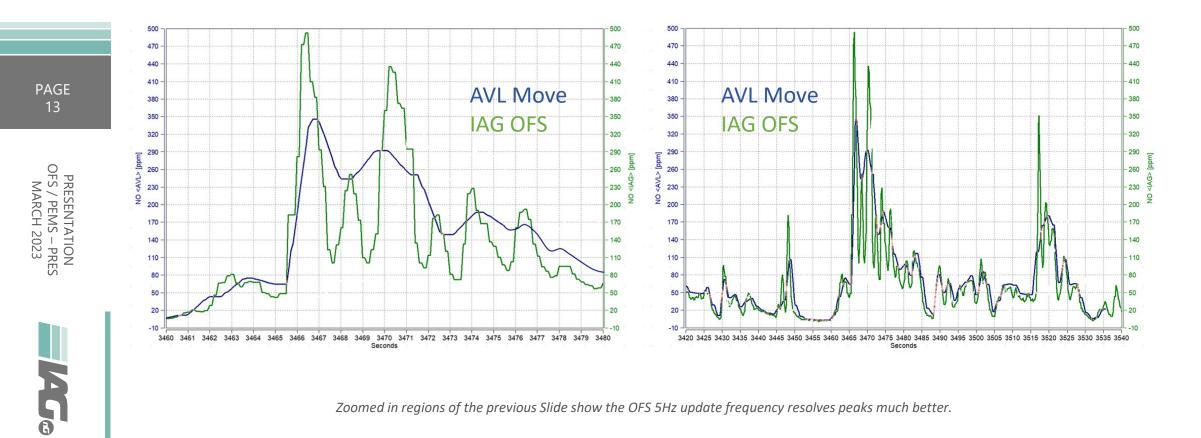
11




#### Comparison to PEMS NDUV

PAGE

12


PRESENTATION OFS / PEMS – PRES MARCH 2023



WLTC cycle of 2.0 L Diesel car, tests done by KIT (Germany) on a RDE route. An IAG OFS (green) was used together with an AVL Move (blue).

NO measurement of OFS and PEMS NDUV match very well.

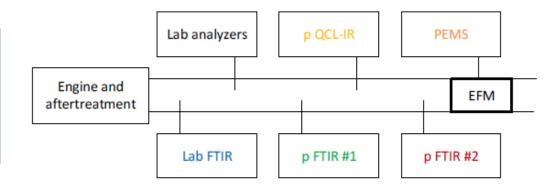
#### **Comparison to PEMS NDUV**



Zoomed in regions of the previous Slide show the OFS 5Hz update frequency resolves peaks much better.

Assessment of On-Board and Laboratory Gas Measurement Systems for Future Heavy-Duty Emission Regulations. Giechaskiel, Jakobsson, Karlsson, Khan, Otsuki, Bredenbeck, Handler-Matejka. Int J Environ Res Public Health. 2022 May 19;19(10):6199. doi: 10.3390/ijerph19106199

### **Experimental Set Up**


| Requirement     | Lab analyzers | Lab analyzers | PEMS        | Lab FTIR    | p FTIR #1   | p FTIR #2   | p QCL-IR    |
|-----------------|---------------|---------------|-------------|-------------|-------------|-------------|-------------|
| Manufacturer    | AVL           | Horiba        | Horiba      | AVL         | IAG         | A&D         | Horiba      |
| Model           | AMA i60       | MEXA-ONE      | OBS-ONE     | Sesam i60   | OFS         | BOB-1000FT  | OBS-ONE-XI  |
| CO <sub>2</sub> | NDIR          | NDIR          | Heated NDIR | Yes         | Yes         | Yes         | -           |
| NOx             | CLD           | CLD           | CLD         | Yes         | Yes         | Yes         | -           |
| N2O             | -             | -             | -           | Yes         | Yes         | Yes         | Yes         |
| NH₃             | -             | -             | -           | Yes         | Yes         | Yes         | Yes         |
| Sampling line   | 6 m (191°C)   | 6 m (191°C)   | 6 m (191°C) | 6 m (191°C) | 6 m (191°C) | 6 m (191°C) | 6 m (113°C) |
| t10-90          | ≤2.5 s        | ≤2.5 s        | ≤3.0 s      | ≤3.0 s      | ≤1.0 s      | ≤2.0 s      | ≤2.0 s      |
| Qs (L/min)      | 13            | 13            | 3           | 10          | 10          | 10          | 3.3         |

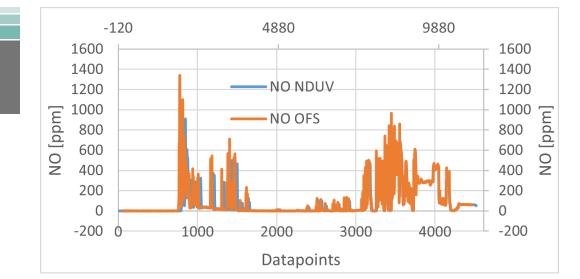
<sup>1</sup> Only those assessed in this study.

PAGE 14

PRESENTATION OFS / PEMS – PRES MARCH 2023

CLD = chemiluminescence detection; FS = full scale; FTIR = Fourier transform infrared; NDIR = non-dispersive infrared; p = portable; PEMS = portable emissions measurement system; QCL-IR = quantum cascade laser – infrared; Qs = sampling flow rate.




Engines were the latest regulations stage, Euro VI Step E.

Test cycles included Cold/Hot WHTC, Hot WHSC, and Cold/Hot ISC

EFM = exhaust flow meter; FTIR = Fourier transform infrared; p = portable; PEMS = portable emissions measurement system; QCL-

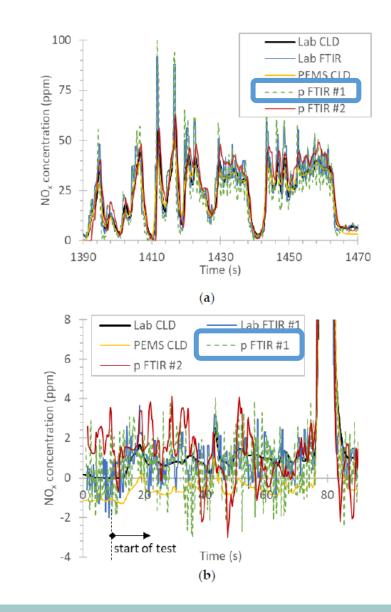
IR = quantum cascade laser - infrared.

#### Comparison to PEMS NO



Top: WHVC shows very good comparison between OFS and NDUV




PAGE

15

PRESENTATION OFS / PEMS – PRES MARCH 2023

Right: Comparison done by JRC, OFS matches very well with reference CLD and FTIR

On the lower right plot the first 70 seconds show that the IAG OFS is measuring low to zero NOx as well as the lab FTIR and CLD and is not shifted to the negative as the PEMS CLD.



#### Mass Comparison of NOx





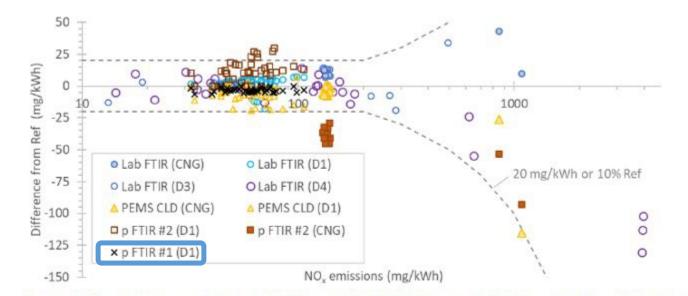
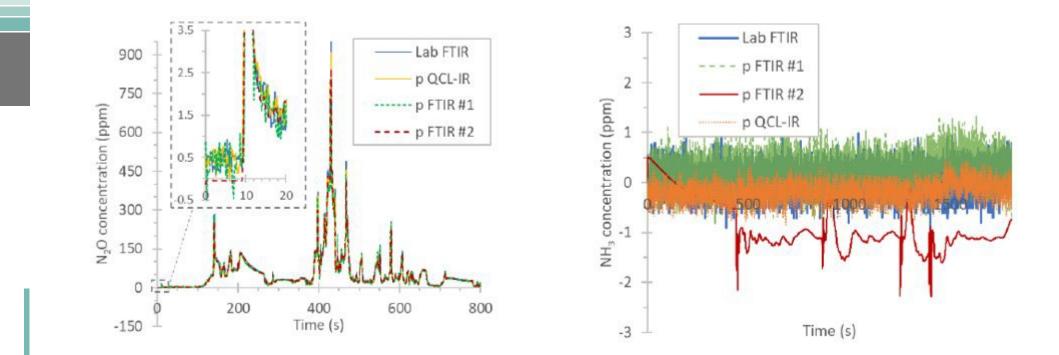



Figure 4. NOx differences of laboratory (Lab) or portable (p) FTIRs, and PEMS from the laboratory real time reference CLD analyzers. CLD = chemiluminescence detection; CNG = compressed natural gas engine; D = Diesel engine; FTIR = Fourier transform infrared; p = portable; PEMS = portable emissions measurement system.


> OFS compared best relative to the Reference for NOx over the WHVC Note: PEMS CLD reported up to 25% lower than the reference (up to 0.1 g/kWh)

#### Comparison to PEMS NDIR



OFS compares well with PEMS NDIR on WHTC

### Comparison to PEMS N<sub>2</sub>O & NH<sub>3</sub>

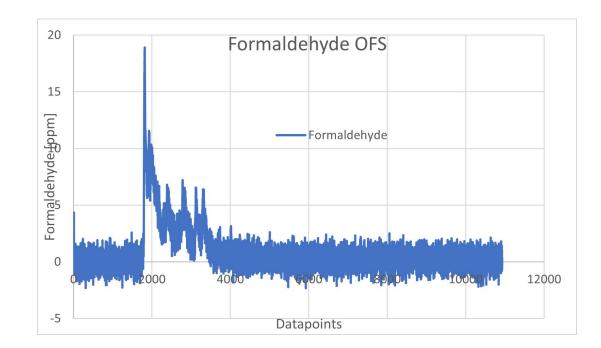


OFS shows excellent agreement for both  $N_2O$  and  $NH_3$  emissions over WHTC.

Ammonia was essentially zero over the cycle

PAGE

18


PRESENTATION OFS / PEMS – PRES MARCH 2023

#### Results PEMS Formaldehyde

PAGE 19

PRESENTATION OFS / PEMS – PRES MARCH 2023





Plot of a WHVC from a MAN Euro VI Diesel truck, measured at TU Graz.

Since the OFS is the only portable FTIR there are no devices to compare.

#### Summery & Conclusion



## Accuracy

Accuracy matches within  $\pm 2\%$  compared to calibration gases, even for small concentrations.



*Even with wet gas, it fulfills all existing and future regulations and is comparable to existing technology.* 



No drift was observed for 8h, no matter if wet or dry gas.



## **Plot & Mass Comparison**

Peak alignment is very good, line shape and response time is comparable or better than existing PEMS devices. Also mass is perfectly comparable to state of the art technology.

#### Summery & Conclusion

### Conclusion

PRESENTATION OFS / PEMS – PRES MARCH 2023

<u>On Board FT-IR System performs as well and, in many</u> cases, better than other PEMS measurement instruments for standard criteria and new criteria.







#### OFS PEMS PRESENTATION

Philipp Jakubec

| COMPANY      |                    |
|--------------|--------------------|
| PRESENTATION | OFS / PEMS – PRES. |
| DATE         | MARCH 2023         |





IAG PRÜFSTANDSTECHNIK GMBH INDUSTRIESTRASSE 322 AUSTRIA

WEIKERSDORF NOE A-2722 +43 2622 41712/0 office@iag-ng.at www.iag-ng.at