Assessment of Measurement Variability of New Low NO_X PEMS for Measurement Allowance (and a brief look at Sensors...)

Southwest Research Institute®

Christopher Sharp 2023 OSAR Conference March 30, 2023

POWERTRAIN ENGINEERING

Objectives for Low NO_X Real World Duty Cycle Testing

- I. Characterize Performance of the Low NO_X Test Engine-Aftertreatment System on Real-World Duty Cycles
 - Does Regulatory Cycle Performance Translate to field cycles ?
- 2. Characterize PEMS Measurement Capability at Low NO_X Levels Using Representative Emission Signatures
 - What is the <u>Incremental</u> Measurement Variability (if any) with PEMS as compared to Lab Reference Measurements ?
- 3. Examine Sensor-Based Measurements at Low NO_X Levels Using Representative Emission Signatures

Experimental Approach – Replay Field Duty Cycles on Stage 3RW Low $NO_{\!X}$ Engine in Lab with PEMS and Sensors

5 field duty cycles, 3 test configurations, 19 total data runs (~ 140 hours of data)

Field Cycle Runs on Low NO_X Engine

POWERTRAIN ENGINEERING

EPA Stage 3RW Low NO_X Demonstration Engine

Real-World Duty Cycles

- Each of these cycles is a real working route that was driven with multiple actual Class 7 and Class 8 trucks
 - WVU collected this data on behalf of EMA
- Cycles represented a wide variety of different kinds of vehicle operations
- Recorded Vehicle Data was used to develop speed/load profiles that could be translated for Laboratory use

Cycle Translation Process Example – CARB Southern Route

Temperature and NO_X Data on Example Field Cycle (EU-ISC)

- Cold-start and low load primary control is using LO-SCR
- High-load LO-SCR efficiency reduced by strategy and dsSCR handles most of load

 enable passive soot oxidation

 Tailpipe behavior is barely visible in black at bottom

Field Duty Cycle Results (3B-MAW) - Stage 3RW

PEMS Experiment Data at this Aging Point

- Emissions are evaluated using new CARB / EPA in-use method (covers all operations, no low power exclusions, includes cold-start)
- Low NO_X emissions shown over a wide variety of Field Cycles
 - Standards (dark blue and red) are CARB 2027 and 2031 in-use compliance thresholds
 - Low NO_X engine generally below targets some Bin 3 margins are smaller than desired
- Low Load emission problem is <u>no longer present</u> with Low NO_X technology controlled as well or better than high load
- Emission controls are durable still below thresholds at 800,000 miles
- Note that these results are for OCV, with CCV Bin 2 and Bin 3 results are lower by ~ 0.005 to 0.007 g/hp-hr
 - CCV provides larger margins at all levels

PEMS Data and Analysis

POWERTRAIN ENGINEERING

PEMS and Sensor Installation (Lab Reference Upstream)

POWERTRAIN ENGINEERING

PEMS vs Lab Reference – NO_x Concentration

All concentrations are Wet and Drift Corrected

span events on a given PEMS

- Overall PEMS NO_x behavior very similar to Lab Reference over 6.5 hours
- Reference is average of 3 separate Lab emission benches

Modeling and Analysis

- Prime path for the program is to use the PEMS data to train a model of measurement variation that will be used to run a Monte Carlo simulation
 - Separate model for each PEMS
 - Model validation against data from CE-CERT in use experiment
 - PEMS compared to Mobile Emission Laboratory Reference
 - This effort is still on-going...
- EPA needed guidance for a PEMS Measurement Allowance for the HD-2027 FRM (finalized in December 2022)
 - Directly analyzed the 19 data sets that we had to look at levels of variation observed
 - 3B-MAW analysis of PEMS vs Lab Reference
 - Also conduct 3B-MAW analysis of individual Lab measurement to understand Lab variation

Direct Experimental Data Analysis Methodology

- Use PEMS and Lab data "as Measured"
 - Time Alignment within each instrument only concentration and flow per 1065
 - We are not generating deltas on a continuous basis
- Calculate 3B-MAW for each PEMS and each Lab Raw measurement
 - 2B-MAW also added later when EPA plans became clear
- Compare each "Candidate" (PEMS or Lab) measurement to the Lab Reference (average of the 3 Lab measurements) on all 3 bins
 - We are comparing only the final bin values
- Note that because of different zero-span schedules for each instrument, it is necessary to generate are matching Reference signal for comparison
 - Otherwise, artificial differences will be generated to do presence and absence of different windows for each instrument
 - Direct comparison across all instruments to each other would require scrubbing away a lot more data or otherwise all combinations between pairs of instruments would require their own analysis (we do not have the resources for this in the timeframe needed)

Example Data Set for NO_X

- Note varying zero-span gaps
- Removing all of these to allow direct comparison would result in loss of ~ 25% of the entire data set including a number of key emission events...

Reference Data Matching Example for NO_X

NO_X Mass Rates for Raw Bench 1 Comparison

Raw 1 — Raw 1 Ref

- For each instrument (PEMS or Lab) a matching Reference is generated with the same zero-span gaps
- This example shows the matching gaps generated for the Raw Lab Bench I comparison
- These traces will be used (along with a matching CO₂ mass rate trace) to calculate 3B-MAW values for the desired comparison
- This was done for each instrument separately (PEMS or Lab)

Example Output for Single Duty Cycle

PEMS 1					PEMS 2				PEMS 3						
PEMS		Reference	PEN	/IS [Delta	% Delta	Reference	PE	MS	Delta	% Delta	Reference	PEMS	Delta	% Delta
Bin 1 g/hr		0.80	0.8	4 0	.0416	5.2%	0.80	0.	.77	-0.0233	-2.9%	0.79	0.43	-0.3529	-44.9%
Bin 2	g/hp-hr	0.0455	0.04	97 0	.0042	9.2%	0.0437	0.0	465	0.0028	6.5%	0.0457	0.0402	-0.0055	-12.0%
Bin 3	g/hp-hr	0.0311 0.0334 0.00		.0023	7.6%	0.0322	0.0	326	0.0005	1.4%	0.0299	0.0296	-0.0003	-0.9%	
Raw 1				Raw 2				Raw 3							
Lab		Reference	Ben	ch [Delta	% Delta	Reference	Be	nch	Delta	% Delta	Reference	Bench	Delta	% Delta
Bin 1	g/hr	0.84	0.7	9 -0	0.0529	-6.3%	0.66	0.	.65	-0.0064	-1.0%	0.65	0.61	-0.0356	-5.5%
Bin 2	g/hp-hr	0.0433	0.04	37 0	.0004	0.9%	0.0427	0.0	427	0.0000	-0.1%	0.0408	0.0393	-0.0015	-3.7%
Bin 3	g/hp-hr	0.0301	0.03	02 0	.0001	0.4%	0.0315	0.0	318	0.0003	1.1%	0.0322	0.0313	-0.0008	-2.5%
PEMS 1							PEN	/IS 2			PEN	1S 3			
PEMS		Refere	nce	PEMS	Delta	% Delt	a Refere	nce	PEMS	Delta	% Delta	Referen	ce PEMS	Delta	% Delta
Bin 1	g/hr	0.8	0	0.84	0.0416	5.2%	0.80)	0.77	-0.0233	-2.9%	0.79	0.43	-0.3529	-44.9%
Bin 2	g/hp-hr	0.03	28 (0.0355	0.0027	8.2%	0.033	37	0.0344	0.0007	2.0%	0.0319	0.0310	-0.0009	-2.8%
Raw 1					Raw 2 Raw 3										
Lab		Refere	nce	Bench	Delta	% Delt	a Refere	nce	Bench	Delta	% Delta	Referen	ce Bench	Delta	% Delta
Bin 1	g/hr	0.8	4	0.79	-0.0529	-6.3%	0.66	5	0.65	-0.0064	-1.0%	0.65	0.61	-0.0356	-5.5%
Bin 2	g/hp-hr	0.03	17 (0.0318	0.0001	0.3%	0.032	29	0.0332	0.0003	0.9%	0.0331	0.0322	-0.0009	-2.7%

- Each result is a delta [PEMS Lab Reference] or [Lab Lab Reference]
- We will also compare across duty cycles and data files for all 19
 - Note that 5 of them are at a higher NO_X level so we will compare at two NO_X levels
- Both 3B-MAW and 2B-MAW results are shown

Comparison of NO_X Deltas – PEMS vs Lab, Bin 3

- For Bin 3 note that PEMS deltas are mostly positive
 - This is not true for all bins
- PEMS deltas are generally larger than Lab deltas
 - There is an occasional flier among bench data
- There not a level dependency for these deltas
 - Note that <u>all</u> results are below 0.05 g/hp-hr reference

PEMS Deltas by Level – Bin 2

Not enough data > 0.05 g/hp-hr to examine level dependency at higher levels

- Deltas are generally the same below 0.05 g/hp-hr
 - This suggests a minimum absolute accuracy
- PEMS show similar variance in deltas
 - PEMS 3 has slightly higher variance
- Different bias observed for each PEMS (below 0.05 g/hp-hr)
 - PEMS I high, PEMS 2 none,
 PEMS 3 low

Analysis of Collected Deltas for All Runs (2B-MAW Example)

	Bin 1					
SD of PEMS Deltas	0.141065854	0.13533327	0.30959153			
Pooled Lab variability	0.021842985					
Incremental SD of PEMS	0.139364483	0.13355889	0.30882001			
95th Percentile Incremental Variance	0.229	0.220	0.508			
Average Bias	0.059	-0.090	-0.283			
Final Value = 95th Percentile+Bias	0.288	0.130	0.225			
		Bin 2				
SD of PEMS Deltas	0.001732451	Bin 2 0.00107469	0.00264034			
SD of PEMS Deltas Pooled Lab variability	0.001732451 C	Bin 2 0.00107469 0.000575709	0.00264034			
SD of PEMS Deltas Pooled Lab variability Incremental SD of PEMS	0.001732451 0.001633997	Bin 2 0.00107469 0.000575709 0.00090748	0.00264034 0.00257681			
SD of PEMS Deltas Pooled Lab variability Incremental SD of PEMS 95th Percentile Incremental Variance	0.001732451 0.001633997 0.0027	Bin 2 0.00107469 0.000575709 0.00090748 0.0015	0.00264034 0.00257681 0.0042			
SD of PEMS Deltas Pooled Lab variability Incremental SD of PEMS 95th Percentile Incremental Variance Average Bias	0.001732451 0.001633997 0.0027 0.0044	Bin 2 0.00107469 0.000575709 0.00090748 0.0015 0.0008	0.00264034 0.00257681 0.0042 0.0003			

Final Allowance Values Bin 1 = 0.4 g/hr Bin 2 = 0.005 g/hp-hr

- Calculations run for each bin and for each of three PEMS
 - Bin I units are g/hr
 - Bin 2 units are g/hp-hr
- Pooled standard deviation developed for both PEMS and Lab
- Incremental PEMS variance calculated by subtracting Lab variance from PEMS variance
- Average bias from Reference calculated for each PEMS
- Final values (in bold) are high side risk for each PEMS
- EPA used these values to develop measurement allowance in FRM

Sensor Data and Analysis

POWERTRAIN ENGINEERING

©SOUTHWEST RESEARCH INSTITUTE

swri.org

Individual NO_X Sensor Comparisons versus Lab Reference

SNTE Full Cycle

- Data is from same SNTE field cycle as PEMS examples
- Controller is tailpipe NO_X sensor from test article (~1200 hours)
- Sensor X/Y/Z examples from different suppliers
 - Not Aged Sensors
- Lab Reference is same as for PEMS comparisons
- At this scale data appears to be very "noisy" compared to Lab
 - Larger features are still captured
- Aged Controller sensor does appear to show a negative offset compared to Lab and other sensors
 - This is just one sample...

Example 3B-MAW Values for Sensors

- Reference is Lab analyzers and Lab exhaust flow
- All sensors use same engine-based exhaust flow and fuel flow (for CO₂)
- Much larger differences than observed for PEMS
 - Differences by sensor manufacturer
- Note EU-ISC cycle seems to have high bias on Bin 3
 - see next slide...

What Happened on EU-ISC Cycle ?

- On this particular test run and test configuration (after aging) there were a couple of NH₃ breakthrough events at high temperature after aggressive ramps (Bin 3)
- NO_X sensor readings biased high by NH₃ at tailpipe
 - This can happen and must be dealt with...

Analysis of Sensors Compared to PEMS – 2B-MAW Bin 2 (Preliminary)

Bias + 95th Percentile Variance, g/hp-hr							
Sensor Y1	0.017	PEMS 1	0.007				
Sensor Y2	0.023	PEMS 2	0.002				
Sensor Y3	0.024	PEMS 3	0.005				
Sensor X1	0.011						
Sensor X2	0.019						
Sensor X3	0.020						
TP Sensor (aged)	0.013						
Sensor Z1	0.047]					
Sensor Z2	0.055						

NONE OF THESE SENSORS ARE AGED EXCEPT THE TP SENSOR

THIS IS A TINY SAMPLE OF PRODUCTION VARIATION FROM ONE BATCH

- Using similar methodology to what was developed for PEMS values used by EPA
- Note that Sensor exhaust flow and fuel flow (CO₂) are fairly close to Reference (and PEMS)
- Even excluding Sensor Z these values are still 2X to 5X PEMS allowance of 0.005 g/hp-hr
 - With Sensor Z as much as IIX
 - Variation even with manufacturers

What Do These Results Indicate About In-Use Measurement?

PEMS

- Current generation PEMS are <u>significantly</u> better than previous evaluations
- PEMS variation for in-use test articles ~ 0.05 g/hp-hr is about 0.005 mg/hp-hr (10%)
 - EPA Measurement allowance of 5 mg/hp-hr based on this value
 - This appears to be the absolute floor for variation (though at least one PEMS was better in this experiment)
 - More data at higher levels needed to examine level dependency
 - CE-CERT validation data may be able to provide this
- NO_X Sensors
 - Work yet to be done for "compliance level" measurements at Low NO_X levels
 - Can be used to identify significant problems, failures, gross emitters...
 - Variation of current sensors is generally 5X to as much as 10X more
 - NH3 cross sensitivity can make this worse...
 - Impact of sensor aging and batch variability must also be accounted for
- Other Engine Sensor Measurements to support 3B-MAW (Exhaust Flow, CO₂ from Fuel Rate)
 - Relatively close, maybe good enough to support compliance measurements if NO_X can be improved

Acknowledgments

- EPA and EMA for funding of the Field duty cycle and PEMS testing
- CARB, MECA, EPA for funding of Low NO_X test engine development
- PEMS suppliers for providing PEMS equipment
- Sensor suppliers for providing NO_X sensors
- MECA member companies for providing emission control hardware
- Cummins for providing the engine and engineering support
- EMTC members for program review, guidance, and program oversight

Appendix – Supporting Slides

POWERTRAIN ENGINEERING

©SOUTHWEST RESEARCH INSTITUTE

swri.org

U.S. In-Use Compliance - 2B-MAW / 3B-MAW Basics

- Utilized in test runs of nearly any length
 - There are some minimums for number of windows in each bin
 - Still require at least 3 hours of non-idle operation for a valid test day
- The entire data set is utilized including cold-start
- The xB-MAW method uses a <u>fixed-length</u> 300-second average window
- Average window is stepped through the data file in 1-second increments
- Each window is sorted into one of 3 load bins based on "normalized CO₂"
 - NO_X mass (all bins) and CO_2 mass (Bins 2 and 3)
 - For EPA Bins 2 and 3 are combined into a single bin
- A sum-over-sum calculation is done for each bin to generate final numbers (Bin 1 is just NO_X mass rate in g/hr)

CARB In-Use NO_x Standards

P:-	Normalized CO ₂	CARB In-Use Threshold					
ып	Range	2024-2029	2030+				
1 – Idle	< 6%	≤ 2 x Idle Standard	≤ 1.5 x Idle Standard				
2 - Low Load	6% to 20%	\leq 2 x LLC Standard	≤ 1.5 x LLC Standard				
3 - Mid-High Load	> 20%	\leq 2 x FTP Standard	≤ 1.5 x FTP Standard				

EPA In-Use Standards

Off-Cycle Bin	NOx	Temperature adjustment ^a	HC mg/hp∙hr	PM mg/hp∙hr	CO g/hp·hr
Bin 1	10.0 g/hr	$(25.0-\overline{T}_{amb})\cdot 0.25$	_	_	—
Bin 2	58 mg/hp·hr	$(25.0-\overline{T}_{amb})\cdot 2.2$	120	7.5	9

POWERTRAIN ENGINEERING

Example of 3B-MAW Window Sorting and Bin Value Accumulation

©SOUTHWEST RESEARCH INSTITUTE

EPA now combines Bin 2 (green) and Bin 3 (purple) in one bin

swri.org