Real World Cycle Measurement Instrumentation Capability at Low NO_X Levels for 2027 and Beyond

SOUTHWEST RESEARCH INSTITUTE®

Christopher Sharp 11th Annual International PEMS Conference March 17, 2022

POWERTRAIN ENGINEERING

1

Objectives for Low NO_X Real World Duty Cycle Testing

- I. Characterize Performance of the Low NO_X Test Engine-Aftertreatment System on Real-World Duty Cycles
 - Does Regulatory Cycle Performance Translate to field cycles ?
- 2. Characterize PEMS Measurement Capability at Low NO_X Levels Using Representative Emission Signatures
 - What is the <u>Incremental</u> Measurement Variability (if any) with PEMS as compared to Lab Reference Measurements ?
- 3. Examine Sensor-Based Measurements at Low NO_X Levels Using Representative Emission Signatures

Experimental Approach – Replay Field Duty Cycles on Stage 3RW Low NO_X Engine in Lab with PEMS and Sensors

EPA Stage 3RW Low NO_X Demonstration Engine

3

Latest Results on EPA Stage 3RW Platform After 600,000 miles Aging

(1,000,000 km) – Regulatory Cycle Results

Composite FTP

- DAAAC¹ Aging (thermal + chemical) \sim 13,800 equivalent hours
- 435,000-mile results compared to 0.020 (FTP-RMC) / 0.050 (LLC) standard -At standard but no margin (LLC below standard with margin)
- 600,000-mile results compared to 0.035 (FTP-RMC) / 0.090 (LLC) standard -

Below standard but is margin enough? (LLC yes)

Note values do not include UAF² (0.002 FTP-RMC, 0.005 LLC)

Test Engine-Aftertreatment Configuration

Cold FTP

Hot FTP

98%

97%

¹ DAAAC = Diesel Accelerated Aftertreatment Aging Cycles ² UAF = infrequent Regeneration Upward Adjustment Factor ©SOUTHWEST RESEARCH INSTITUTE

LLC

RMC 2021

swri.org

Cycle Development Process Example – Southern NTE Route

Temperature and Data on Example Field Cycle (EU-ISC)

- Cold-start and low load primary control is using LO-SCR
- High-load LO-SCR efficiency reduced by strategy and dsSCR handles most of load
 - enable passive soot oxidation
- Tailpipe behavior is barely visible in black at bottom

3-bin Moving Average Window (3B-MAW) – Short Description

Binning of windows by load (normalized CO ₂)							
window normalized average CO2 rate = $\frac{\left(\sum_{t=1}^{n} \dot{m}_{CO2}(t)\right)}{FCL \times \left(P_{max} \times \frac{n}{3600}\right)}$							
	Bin Engine Normalized Average Type Window CO2 Rate						
Bin 1	ldle	Diesel Cycle	CO2 _{normalized} ≤6%				
Bin 2	Low	Diesel Cycle	6% < CO2 _{normalized} ≤20%				
Bin 3	Med/High	Diesel Cycle	20% < CO2 _{normalized}				
	All Operation	Otto-Cycle	na				

Emission Calculations - summed totals for each bin (Bin 2/3 use sum-over-sum NO_x / CO₂)

Bin 1
$$e_{sos NOX, idle} = \frac{\sum_{k=1}^{n} \dot{m}_{NOX} \times \Delta t}{\sum_{k=1}^{n} \Delta t} \times \frac{3,600 \, sec}{1 \, hr}$$

Bin 2/3
$$e_{sos a,b} = \frac{\sum_{k=1}^{n} \dot{m}_a \times \Delta t}{\sum_{k=1}^{n} \dot{m}_{CO2} \times \Delta t} \times e_{CO2,FTP,FCL}$$

- All operation is used (including cold-start starting 2027)
- 300-second Moving Average Window (MAW) increments I second at a time
- NO_X and CO₂ emissions from each window sorted into bins by normalized CO₂ (load surrogate)
- Bin I (Idle) emissions calculated as average mass rate for the entire bin
- Bin 2 / 3 (Low / Med-High) emissions calculate as sum-over-sum (NO_X/CO₂) for the bin
 - multiplied by FTP BSCO₂ to translate emissions to $BSNO_X$ in g/hp-hr

Example of 3B-MAW and Emissions – EU ISC Route (Stage3RW-435Kmi System)

©SOUTHWEST RESEARCH INSTITUTE

			Result		Windows	
Bin	2027	2030	g/hp-hr	g/hr	%	Number
Idle (< 6%)	10	7.5	0.035	0.4	13.6%	3180
Low (6%-20%)	0.10	0.075	0.025	1.5	52.6%	12300
Mid-High (> 20%)	0.04	0.03	0.033	5.1	33.8%	7906
Total Cycle			0.030			23386
Total Sum-over-Sum			0.031			
Cycle CO2 % Max					16.3%	

- Large margins for Bin I/2
- Bin 3 is between 2027 and 2030 thresholds
- Main Bin 3 emissions occur at transition from Urban to Rural segment

POWERTRAIN ENGINEERING

Real World Duty Cycle Results on EPA Stage 3RW Platform

435,000 miles Aging

Warehouse transport and local deliveries (including shut-downs) WVU Grocery **Delivery Route** WVU Drayage Route Transfer to/from Local and Neardock operation regional warehouse Time Ihrs] Inside port or drayage yard operation =>

Real-world routes run by WVU on trucks, translated to cycles we could run on engine-dyno using Stage 3RW system (stock system performed similarly to field data...we are duplicating the field duty cycle accurately)

- Regulatory Cycle performance (with LLC) <u>does</u> <u>translate to real-world performance</u> for this system
- Bin I / 2 below 2030 thresholds with margin
- Bin 3 some duty cycles in but some were at or above 2030 thresholds, below 2027 but little margin

* 3-bin MAW is the new in-use testing protocol (EPA/CARB), considers all operation including cold-start, 5-min averaging window results sorted into three "load" bins

POWERTRAIN ENGINEERING

PEMS vs Lab Reference – NO_x Concentration

All concentrations are Wet and Drift Corrected

span events on a given PEMS

- Overall PEMS NO_x behavior very similar to Lab Reference over 6.5 hours
- Reference is average of 3 separate Lab emission benches

Importance of Periodic Zero or Zero-Span and Drift Correction

- In this case, drift was observed over test day of ~ I.7ppm
- Periodic zero observations allowed appropriate drift correction
- Significant reduction in PEMS delta versus Lab Reference

3B-MAW	F	PEMS	Lab	
Results	DC	not DC	Reference	
Bin 1, g/hr	0.9	1.2	0.8	
Bin 2, g/hp-hr	0.049	0.062	0.040	
Bin 3, g/hp-hr	0.035	0.042	0.034	

PEMS Exhaust Flow Comparisons – SNTE Example

- Overall similar response between Lab and PEMS flow meters
- Span errors up to 5% observed
- Intermittent issues observed at low flow rates near idle

POWERTRAIN ENGINEERING

Selected 3B-MAW Cycle Results – PEMS versus Lab

SNTE Cycle – Stage 3RW, 435k

Bin	Lab	PEMS A	PEMS B	PEMS C
Idle (< 6%)	0.7	0.9	0.8	0.3
Low (6%-20%)	0.041	0.049	0.043	0.037
Mid-High (> 20%)	0.030	0.035	0.034	0.031

Drayage Cycle – Stage 3RW, 435k

Bin	Lab	PEMS A	PEMS B	PEMS C
Idle (< 6%)	0.3	0.3	0.3	0.4
Low (6%-20%)	0.015	0.018	0.020	0.019
Mid-High (> 20%)	0.023	0.020	0.029	0.029

SNTE Cycle – Detuned Controls at Higher Emissions (0.04 g/hp-hr FTP, 0.1 g/hp-hr LLC)

Bin	Lab	PEMS A	PEMS B	PEMS C
Idle (< 6%)	5.2	4.3	5.5	4.9
Low (6%-20%)	0.183	0.163	0.162	0.175
Mid-High (> 20%)	0.047	0.051	0.048	0.049

SwRI

- Differences between PEMS and Lab are observed
 - Note that multiple Lab Reference benches were also used
 - PEMS differences were larger than difference among Lab benches
- No consistent trend in PEMS versus Lab comparison across all duty cycles or at different emission levels
 - No clear bias or offset was observed
 - This was true both across different
 PEMS and from PEMS to Lab

Individual NO_X Sensor Comparisons versus Lab Reference

SNTE Full Cycle

- Data is from same SNTE field cycle as PEMS examples
- Controller is tailpipe NO_X sensor from test article (~1200 hours)
- Sensor X/Y/Z examples from different suppliers

 Not Aged Sensors
- Lab Reference is same as for PEMS comparisons
- At this scale data appears to be very "noisy" compared to Lab
 - Larger features are still captured
- Aged Controller sensor does appear to show a negative offset compared to Lab and other sensors
 - This is just one sample...

Impact on 3B-MAW (nic Aging or Batch variability)

3B-MAW Result	2030 CARB Threshold	Lab Reference	Sensor X	Sensor Y	Sensor Z
Bin 1, g/hr	7.5	0.7	0.9	0.3	1.3
Bin 2, g/hp-hr	0.075	0.040	0.039	0.028	0.068
Bin 3, g/hp-hr	0.03	0.033	0.034	0.032	0.072

POWERTRAIN ENGINEERING

swri.org

Filtered Sensor Data Comparisons and Impact on Results

- High Frequency sensor behavior makes it difficult to see where sensor is overall compared to Lab
- Added 10-sec moving average filter to sensor data
- Filtered data shows offsets more clearly
- No overall pattern
 - positive and negative offsets
 are observed compared to Lab
 data
- Could these lower frequency errors be addressed by zero "drift" correction ?

NO_X Sensor Behavior versus Engine Operation

- A variety of different behaviors are seen for different kinds of engine operation
- Rapid changes in speed and/or torque result in significant "noise"
- Sensor behavior impacted by rapid rates of change in load
 - this event show a large but momentary load drop (but not quite a fuel cut event)
- Large swings in O₂ and/or H₂O appear to cause disturbance in NO_X sensor reading
 - this can cause positive or negative errors

Engine ECM Exhaust Flow – CAN J1939 versus Lab

Engine 1

Data from CARB Stage 2 Low NO_x Program

Multiple Production 2018 Heavy-Duty Engines

- ECM Exhaust Flow sum or recorded air flow and fuel flow recorded from J1939 broadcast
 - EngInletAirMassFlowRate (kg/hr)
 - EngFuelRate (L/hr converted to kg/hr using 0.851 kg/L)
- Compared to Lab Reference
 - Measure Intake Air Flow (LFE) + 1065 Chemical Balance
- Standard Error ~ 2-3%, Span Errors < 5%

CO₂ from Engine ECM Fuel Rate – J1939 versus Lab

- ECM Fuel Rate (J1939 EngFuelRate)
- CO₂ can be calculated from Fuel Rate
 - There will be some added error due to varying fuel carbon fraction small for diesel
 - Likely good enough for purposes of binning
- Flow rate SEE within 3% and slope within 5%

Data from CARB Stage 2 Low NO_x Program

Multiple Production 2018 Heavy-Duty Engines

What Do These Results Indicate About In-Use Measurement?

PEMS

- Overall results look relatively good no significant biases present with automated zero or zero-span checks active and drift correction applied
- Spread does appear wider than Lab Reference, but more analysis is needed to say how much
 - SwRI is working on a model of PEMS measurement error to allow analysis via Monte Carlo simulation approach
- Note these are <u>current generation PEMS</u>, significantly better than previous evaluations
- These results do not consider environmental impacts on PEMS
 - Are current generation PEMS better than previous equipment ?
- NO_X Sensors
 - Work yet to be done for "compliance level" measurements at Low NO_X levels
 - Can be used to identify significant problems, failures, gross emitters...
 - There may be potential for improvement in compensating for sensor drift and/or engine transients
 - Impact of sensor aging and batch variability must also be accounted for
- Other Engine Sensor Measurements to support 3B-MAW (Exhaust Flow, CO₂ from Fuel Rate)
 - Relatively close, maybe good enough to support compliance measurements if NO_X can be improved

