Performance evaluation of an iPEMS: intercomparisons and implications for road-side inspection, fleet screening, and road worthiness

Daisy Thomas¹ Gurdas S. Sandhu¹ Victor Valverde-Morales²

¹ 3DATX Corporation,

² European Commission, Joint Research Centre (JRC)

https://www.3DATX.com https://www.3DATX.eu 11th Annual International PEMS Conference o

≻Introduction to Periodic Technical Inspection (PTI)

> The impact of particulate composition on PN from PTI equipment

Emissions measurement system error margins

- ≻The parSYNC iPEMS solution
- ≻Test Program
- ➢Results
- ➤Conclusions

Periodic Technical Inspection (PTI) Today

- The European Union methods of inspection and maintenance, Periodic Technical Inspection (PTI) for exhaust emissions are mostly regulated by Directive 2014/45/EU:
 - Correct status of complex exhaust after-treatment systems are verified only by visual inspection
 - Requires different emission tests based on vehicle engine type:
 - Positive ignition engine emissions use a certified exhaust gas analyzer to determine:
 - Gaseous emissions (CO, CO₂, O₂, HC) do not exceed OEM/vehicle type specified thresholds,
 - Lambda coefficient not outside OEM specified range, or if not specified not outside 1±0.03,
 - OBD read-out does not indicate significant malfunction.
 - Compression ignition engine emissions use certified opacity meter and protocol to determine:
 - Opacity does not exceed OEM/vehicle type specified thresholds.
- ➤ Directive 2014/45/EU is out of date:
 - No check for relevant pollutants such as NOx and PN,
 - There are concerns around the sensitivity of the smoke opacity method to detect particulate emission issues from vehicles fitted with particulate filters.

European PTI emission measurement is progressing:

- A methodology that seems to be efficient for detecting tampered or malfunctioning particulate filters in diesel vehicles is the solid particle number (SPN) measurement at idling,
- Some member states are introducing new PTI regulations upfront of EU regulation
- EU regulates OBM CO₂ monitoring for new vehicles from 2021, with PTI procedures to be defined,
- Work is ongoing to develop a NOx PTI protocol.
- > But there is much progress yet to be made:
 - Particulate (PN) protocol, measurement & threshold to be finalized,
 - NOx protocol, measurement & threshold to be agreed,
 - CO and CO₂ protocol, measurement & threshold to be developed.

Existing PTI equipment won't likely be of use in the future. New equipment must still be:

- Robust enough for the garage environment,
- Simple in operation for non-expert staff,
- Low cost,
- Sensitive enough for purpose.

The impact of particulate composition on PN readings from PTI equipment

- Melas et al (2021) found high sub-23nm fractions and volatile fractions from testing of different vehicles,
 - Solid sub-23nm fractions (SPN10 SPN23)/SPN23 ranged from 5% to 775%.
 - Volatile fractions (TPN10 SPN10)/SPN10 ranged from 6% to 47%.
 - Sub-23nm volatile fractions (TPN10 SPN23)/SPN23 ranged from 45% to 1025%.

Vehicle Comment		SPN23	SPN10	Sub-23 nm	TPN10	Volatiles	Sub-23 and	
		(#/cm3)	(#/cm3)	Fraction	(#/cm3)	Fraction	volatiles fraction	
V1	DPF (high sub-23)	4.00E+04	3.50E+05	5 775	5% 4.50E+05	29%	1025%	
V2	DPF (after regen.)	4.80E+04	5.00E+04	↓ ∠	%			
V3	DPF (old)	3.80E+05	5 1.70E+06	5 347	7%			
V4	DPF (bypass)	2.70E+05	5 7.00E+05	5 159	0% 1.10E+06	57%	307%	
V5	GDI (no filter)	7.60E+04	1.00E+05	5 32	2% 1.10E+05	10%	45%	
V6	No DPF	8.90E+06	5 1.40E+07	57	7%			

Melas, A.; Selleri, T.; Suarez-Bertoa, R.; Giechaskiel, B. Evaluation of Solid Particle Number Sensors for Periodic Technical Inspection of Passenger Cars. Sensors 2021, 21, 8325. https://doi.org/10.3390/s21248325

5

The impact of particulate composition on PN from PTI equipment

Melas et al (2021) found that the sub 23nm fraction causes deviation of existing PN PTI equipment from PMP-type systems (23nm cut-off, VPR).

➢One would expect even greater deviations from PN equipment without the 23nm cut-off (or a VPR).

https://www.3DATX.com

https://www.3DATX.eu

Melas, A.; Selleri, T.; Suarez-Bertoa, R.; Giechaskiel, B. Evaluation of Solid Particle Number Sensors for Periodic Technical Inspection of Passenger Cars. Sensors 2021, 21, 8325. https://doi.org/10.3390/s21248325

11th Annual International PEMS Conference

A note on emissions measurement system error margins

- ➤ The EU outlines the permissible error margins for PEMS equipment compared to standard laboratory equipment. They are presented as a mass emission difference and a percentage difference, with the larger of the two taken as the threshold.
- ➤ When comparing two PEMS devices directly, it is logical to combine the uncertainties that each can have with regard to the laboratory references, according to standard error propagation rules;

$$\delta_{total} = \sqrt{\delta_{PEMS1}^2 + \delta_{PEMS2}^2} ,$$

>Therefore, between two PEMS we infer larger permissible error margins.

>Note that these error margins are not currently required of PTI equipment.

	PEM	IS vs Lab	PEMS vs PEMS			
	Mass Emissions	Percentage difference	Mass Emissions	Percentage difference		
CO_2	10 g/km	10%	14.12 g/km	14.10%		
CO	150 mg/km	15%	212.13 mg/km	21.20%		
NOx	15 mg/km	15%	21.21 mg/km	21.20%		
PN	1E11 #/km	50%	1.41E11 #/km	70.70%		

Test Program

- Study the performance of emissions measurement systems for new PTI testing,
 - Compare the measured mass emission values and linearity between the iPEMS and regulatory PEMS/Lab equipment,
 - Study the drift and rise response characteristics of the iPEMS.
- Investigate the impact of a 23nm cut-off and volatile particle removal on measured PN values,
 - Calculate the sub-23nm and volatiles fractions on PN from a diesel vehicle,
 - Compare the readings between different equipment setups (23nm vs 10nm cutoff diameters, VPR vs non-VPR).

9

Device used - The parSYNC iPEMS

≻Lightweight & Easy To Use

- Total System Weight: 6.7 kg (22.1 lb)
 - parSYNC[®] Weight: 4.1 kg (13.7 lb)
 - CUBE™ Weight (with one battery): 2.6 kg (8.4 lb)

≻Battery Life

4-5 hours typically

≻Tier 1 GasMOD[™] Sensor Cartridge

- Electrochemical: NO (0-5000ppm) & NO₂ (0-300ppm)
- NDĨR: CO₂ (0-20%), CO (0-15%)

≻Tier 1 Particulates Sensor Cartridge

• PN/PM (10 to 10,000nm = 0.01 to 10,000nm)

No 23nm cut-off for this system

A volatile particle remover (VPR) was tested in this trial – VPR was a heated evaporation tube operating at 400C

Gases $-CO, CO_2, NO, NO_2 + HC and O_2$

Full CAN + support for external sensors

Particulates - Ionization, Scattering, and Opacity, with advanced temperature control

Enhanced chiller and volatile particle removal

Hot-swap Milwaukee Li-Ion batteries for full-day of testing

Onboard display and data storage + WiFi Access-point

https://www.3DATX.com

https://www.3DATX.eu

Test Vehicles, Cycles and Equipment

Vehicle	Model Year	Euro Standard	Fuel	Injection	Aftertreatment	Powertrain
V1	2020	Euro 6D-TEMP	Gasoline	Direct Injection	TWC, GPF	Plug-in Hybrid
V2	2017	Euro 6-TEMP	Diesel	Direct Injection	SCR, DPF	ICE

Test	Cycle	Vehicle	Equipment
1	On-road dynamic drive <i>outside</i> RDE boundary (2 repeats)	V1	parSYNC with and without VPR, Horiba OBS-ONE
2	WLTC	V1	parSYNC with VPR, AVL AMAi60 Analyzer, AVL Particle Counter
3	Steady state – low idle	V2	parSYNC with and without VPR, AVL Particle Counter both with 10nm and 23nm cut-off diameters

All tests were performed at the European Commission's Joint research facility by JRC personnel

Test Vehicles, Cycles and Equipment

https://www.3DATX.eu

13

Results

14

2020 Euro-6D-TEMP GDI On-road Dynamic Drive Results

		Absolute difference between parSYNC and Horiba OBS ONE, per kilometer*					Percentage difference betweenparSYNC and Horiba OBS ONE				*All mass emissions calculated
С	O ₂	$11 \pm 1 \text{ g/km} \leftarrow 14 \text{ g/km permissible}$				5 ± 0.4	$5 \pm 0.4 \% \leftarrow 14 \%$ permissible			9 ± 0.03	speed for distance and
С	O	500 ± 100 r	ng/km ← 2	212 mg/kr	n permissible	17 ± 2	% ← 21 % pe	rmissible	0.9	4 ± 0.1	Horiba OBS ONE for
N	0	21 ± 6 mg/k	$xm \leftarrow No$	specific lin	mit	10 ± 3	$\% \leftarrow No spec$	ific limit	0.8	8 ± 0.1	exhaust flow rate
N	Ox	$22 \pm 8 \text{ mg/km} \leftarrow 21 \text{ mg/km} \text{ permissible}$				14 ± 3	% ← 21 % pe	rmissible	0.8	7 ± 0.03	N B no
P	N	$2x10^{12} \#/km \leftarrow 1.4x10^{11} \#/km \text{ permissible}$ 152 % \leftarrow 70.7 % p				← 70.7 % per	missible	0.1	1	23nm cut- off for	
	CC	D ₂	С	Ö	١	40	NO	X		PN	parSYNC PN
260 250 - 240 - (III) 230 - 00 220 - 210 - 200 - 190 -	la https://w	lb Test	4500 4000 3500 2500 1500 0 1a	1b Test OBS ONE	70 60 50 50 40 30 20 10 0 10 1a ParSYNC no V	Ib Test PR parS	$ \frac{70}{60} + \frac{1}{60} + \frac{1}{60$	1b Test	1E+13 1E+12 1E+11 1E+10 1E+09 1E+09 1E+07 1E+07 1E+06 1E+05 1E+04 1E+03 1E+02 1E+01 1E+00	la lb Test	Limits are for context only; no indication of vehicle performance as not RDE
—()) <u>https://w</u> https://w	ww.3DATX.com ww.3DATX.eu			-	-	11th Annu	al International PEM	IS Conference		2022 〇

2020 Euro-6D-TEMP GDI On-road Dynamic Drive Results

	Drift between parSYNC start and end of test (from ambient readings)
CO ₂	110.9 ppm ← RDE zero drift limit: 2000 ppm
СО	6.5 ppm ← RDE zero drift limit: : 75 ppm
NO	4.9 ppm ← No specific RDE zero drift limit
NOx	5.0 ppm ← RDE zero drift limit: : 5 ppm
PN	4.67×10^5 #/cm3 ← No specific RDE zero drift limit

2020 Euro-6D-TEMP GDI WLTC Results

_	Absolute differ and Lab values	ence between pa , per kilometer*	INSYNC	Percent o parSYN	lifference C and Lal	between values	Correla coeffici	ation ient	*All mass emissions calculated
CO ₂	2.4 g/km ← 10 g	g/km permissible		1.6 % ←	10 % perr	nissible	1.002		via GPS speed for
CO	16.6 mg/km ← 150 mg/km permissible			5 % ← 1:	$5 \% \leftarrow 15 \%$ permissible				and Horiba
NO	3.3 mg/km ← No specific limit			18 % ←]	$18 \% \leftarrow No \text{ specific limit}$				for exhaus flow rate
NOx	2.6 mg/km ← 1	5 mg/km permiss	ible	14 % ←	15% perm	issible	0.74		N.B. no
PN	1.4x10 ¹² #/km ←	– 1x10 ¹¹ #/km pe	ermissible	164 % ←	- 50 % per	rmissible	1.58	•	23nm cut-o for parSYN
	CO ₂	СО	NC)	NO	Эx	F	PN	PN
$ \begin{array}{c} 180\\ 160\\ 140\\ 120\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	1000 900 800 700 0 500 0 300 200 100 0 g Diluted parSYNC Its Results	Bag Diluted parSYNC Results	$ \begin{array}{c} 25\\ 20\\ \hline 0\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Diluted parSYNC Results	$ \begin{array}{c} 60\\ 50\\ \hline 60\\ \hline 80\\ \hline 80\\ \hline 90\\ \hline 0\\ \hline 80\\ \hline 80\\ \hline 90\\ \hline 9$	Diluted parSYNC Results	1E+12 - 1E+10 - 1E+08 - 1E+06 - 1E+04 - 1E+02 - 1E+00 - Bag Result	s Diluted parSYNC Results	Limits are for context only; no indication ovehicle performance

https://www.3DATX.com https://www.3DATX.eu (Diluted results are the transient emission values sampled from within the CVS system, corrected for dilution)

2017 Euro-6-TEMP Diesel Steady State Low Idle Results

- All previous PN results presented compare parSYNC with no cut-off against a regulated PEMS/lab system with 23nm cut-off, so are not valid comparisons.
- ➢ For a more meaningful comparison the parSYNC with and without VPR (separate tests performed for each) was compared against the AVL Particle Counter with 23nm and 10nm cut-offs.
- ▷ N.B. A zero drift was corrected on VPR parSYNC test data during processing.
- ➢ From the two tests performed, the sub-23nm fraction was 590 ± 40 %.
- ➤ The volatile fraction appears to be approximately 50% from comparison of two separate tests, in agreement with the findings of Melas et al (2021).

nttps://www.3DATX.com

https://www.3DATX.eu

2017 Euro-6-TEMP Diesel Steady State Low Idle Results

parSYNC VPR?	APC cut-off	Percentage difference between parSYNC and Lab values
VDD	23nm	$\sim 148\% \leftarrow 50\%$ permissible
VFK	<u>10nm</u>	<u>~1.1% ← 50 % permissible</u>
No VDD	23nm	$\sim 172\% \leftarrow 50\%$ permissible
NO VPK	10nm	~59% ← 50 % permissible

- The 10nm APC readings were much closer to the parSYNC PN values than the 23nm APC readings on both (VPR and non-VPR) tests; The parSYNC VPR brought PN readings closer to those of the APC.
- ➤ The parSYNC with VPR was closest to the APC with 10nm cut-off, and well within the permissible tolerance for percent difference between a PEMS and lab values,
 - One would expect this difference to decrease further if the cut-off for the APC was reduced (e.g. to 4nm).
- ≻ A substantial reduction of measured PN values results from a 23nm cut-off and volatiles removal.
- If PTI is to tackle air quality health concerns, these <23nm particles should also be limited. Type approval Euro standards should incorporate particles smaller than 23nm, with PTI following suite.</p>

Conclusions

- The gaseous emissions from the parSYNC tests were generally within the permissible tolerances applicable to regulatory PEMS / laboratory equipment.
- The parSYNC instrument drift from PTI testing was within the tolerance set for regulatory PEMS equipment during RDE testing.
- An APC with 10nm cut-off approached the values of the parSYNC with VPR (and no cut-off)
- A large fraction of sub-23nm diameter particles and volatile particles arise from idle engine testing, supporting a reduction in PN cut-off diameter (for both type approval and PTI) if air quality concerns are to be addressed.
- These tests show that equipment designed for PTI use can perform reasonably well against regulatory lab equipment. The upgraded parSYNC device (parSYNC FLEX) will improve the system further.

3DATX Contact Info

Acknowledgement

The authors would like to thank the Joint Research Centre (JRC) for conducting the test campaign

