

Real World Emissions Analysis Using Sensor-based Emissions Measurement System for Light-duty Direct-Injection Gasoline Vehicle

<u>Susumu (Mu) SATO</u>, Chanpaya EANG, Jiaxin CHEN (Tokyo Institute of Technology) Kotaro TANAKA (Ibaraki University) Takeshi TANGE (NGK Spark Plug Co., Ltd)

11th Annual International PEMS Conference

Research Background

Tokyo Tech

✓ Local roadside emission → "Hot spot" ✓ RDE regulations using PEMS

Distance-based NO_x mass emissions for diesel passenger vehicle

PEMS measurement

On-road measurement data; NOx mass ≥ 0.08 g/km

Tokyo Tech

• Studying the cause of the emission.

- Where, how much and why pollutants are emitted?
- Conduct real-driving experiments on light-duty direct injection gasoline vehicle
- Measure PM/PN, NO and NH₃ emissions by using SEMS (Sensorbased Emission Measurement System)

Test Vehicle and Sensor-based Emission Measurement System

Fuel injection	DI	
Engine type	In-line 4 cylinder gasoline turbo	
Displacement	1,618 cc	
Max. power output	140 / 5600 kW / rpm	
Aftertreatment devise	TWC	
Vehicle mas	1,565 kg	
Emission standard	2005	
Model year	2014	

Emissions Measurement Sensors

NO_x sensor detected NH_3 as well as NO_x

NH₃ Concentration Calculation

Current When NOx sensor and potential sensor for NO are used, ammonia emitted from gasoline vehicles will be measured.

> Sensor signals were compared with those obtained by FT-IR and laser-based measurement system.

[NOx sensor] – [Potential sensor for NOx] $\approx NH_3$

~NOx

Division by 0.9 is used to calibrate the sensor sensitivity.

NH3 sensor for diesel

Not me

Ref: K. Tanaka et al., the 10th Annual International PEMS Conference (2021)

Ref: K. Tanaka et al., Society of Automotive Engineers of Japan, 2020 Annual Autumn Conference Proceedings, No. 232 (in Japanese)

On-road Driving Test Routes

Data sampling rate	10Hz	
Number of	8 times	
measurement		
Fuel	Gasoline	
	(HC1.8)	

Tokyo Institute of Technology (Ookayama Campus)

Average Emission

Test Data	Hot/Cold
#1	Cold
#2	Cold
#3	Hot
#4	Cold
#5	Hot
#6	Cold
#7	Hot
#8	Hot

PM/PN Emission Analysis

NO Emission Analysis

NH₃ Emission Analysis

Accumulated NH₃ Mass Emission

 $\begin{array}{c} \text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2\\ \text{2NO} + 2\text{CO} + 3\text{H}_2 \rightarrow 2\text{NH}_3 + 2\text{CO}_2\\ \text{2NO} + 5\text{H}_2 \rightarrow 2\text{NH}_3 + \text{H}_2\text{O} \end{array}$

Ref: Barbier et al., Applied Catalysis B Environmental, Vol. 4, p. 105-140, 1994

反

Tokyo Tech

PM Emission Hot-spot

NO Emission Hot-spot

NH₃ Emission Hot-spot

Summary

- 1. PM emission increased during rapid acceleration and even more so when vehicle reaccelerates after deceleration.
- 2. NO emission was found especially in lean condition where the excess air ratio is close to 1.
- 3. NH_3 emission increased in rich condition. In rich condition, there is not enough oxygen for complete combustion and CO was formed. NH_3 was generated from this CO.
- 4. NH₃ emission in the first 10 minutes of cold-start was found several times higher than in hot-start and the rest of the data. When the engine is cold, injected fuel is not completely oxidized which leads to the formation of CO and NH₃.
- 5. PM, NO and NH_3 emission tends to occur before and after traffic lights. However, each component hotspot tends to be at different places.
- * For more details, please refer our SAE technical paper, #2022-01-0572

Hypothesis of cold start NH_3 emission due to the existence of CO will be verified by the driving test with SEMS and PEMS.

Thank You for Your Listening

Susumu (Mu) Sato Tokyo Institute of Technology sato.s.ay@m.titech.ac.jp

On Road Driving Test Data	Driving time [s]	Driving Distance [km]	Average Speed [km/h]	Maximum Speed [km/h]	Hot/Cold Condition
#1	1966.8	10.165	18.61	48.14	Cold
#2	1857.9	10.455	20.26	58.90	Cold
#3	2131.3	10.461	17.67	60.09	Hot
#4	1941.0	10.445	19.37	59.56	Cold
#5	2174.1	10.417	17.25	60.08	Hot
#6	2108.6	10.456	17.85	58.09	Cold
#7	2256.6	10.425	16.63	56.12	Hot
#8	2100.4	10.445	17.90	58.11	Hot