

OSAR Conference March 2024 Riverside, California

Evaluation of a miniaturized exhaust emission measuring system for L-Category Vehicle Measurements in Real-World Driving Conditions

Raptis I.¹, Tziovas T.², Triantafyllopoulos G.², Kousias N.¹, Haedrich L.^{3,4}, Stahl U. ^{3,4}, Ntziachristos V. ^{3,4}, Ntziachristos, L. ¹

 $^{(1)}$ Aristotle University of Thessaloniki, Department of Mechanical Engineering $^{(2)}$ EMISIA SA

⁽³⁾ Technical University of Munich, School of Medicine, Chair of Biological Imaging ⁽⁴⁾ Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging

Presenting author email: raptisim@auth.gr

Objective

- Evaluate the performance of a miniaturized exhaust emissions measurement system in lab with reference instruments
- Assess its applicability for real-world emissions testing

Background – L-Vehicle emissions

- PEMS devices are being used for type approval of light duty vehicles but are impossible to implement for most L-vehicles due to size and weight limitations
- Currently, legislation for L-vehicles is less strict than that of passenger cars, mainly due to lack of standardized measurement equipment
- Although PM emissions were introduced in the Euro 4 and became stricter int the Euro 5 regulations for L-vehicles, very few studies have assessed Black Carbon (BC) emissions of L-category vehicles.
- Studies of real-world emissions are very recent with the use of miniaturized PEMS devices. Development of such systems is crucial to evaluate the actual contribution of L-vehicles in air-pollution.

LENS Project

Real Time Emissions Measurement System (ReTEMS)

- Custom sampling system with heated line and stable flows
- Commercial ambient gas sensors
- Novel Optoacoustic Sensor for Black Carbon
- ➢ RH and T measurement

Detection	Technology Used	Measurement	T ₀₋₉₀ (s)	Resolution
Pollutant		Range		(ppm)
CO ₂	NDIR	0-20 %	2-3	<70
CO	Electrochemical	0-5000 ppm	20-30	<0.5
NO	Electrochemical	0-500 ppm	5-10	<0.3
BC	Optoacoustic	5-10000 μg/m3	<1	5 (µg/m3)

Novel Optoacoustic Black Carbon sensor - RSENSE

- Optoacoustic principle
- > 808 nm LD for BC detection
- Ellipsoid chamber for sound refocusing
- QTF for highly sensitive sound detection

	Current version	Potential
Weight	4 kg	2 kg
Dimensions	33 x 22 x 12 cm	20 x 20 x 10 cm
Cost	4k €	1.5k€

QTF

Sampling system

Custom heated line at 70 °C

MFCs for flow stabilization and dilution control (exhaust pulsations)

Dilution ratio is 10:1

Dilution ratio setting using the CO2 sensor and a reference CO2 span gas

ReTEMS Experimental Layout

Vehicle and test specifications

Vehicle characteristics: 150 cc / gasoline / 4-stroke

Test cycles: WMTC / RDC / RDE

Reference instruments: $BC \rightarrow MSS / Gases \rightarrow PEMS$

Chassis dyno setup

Standard RDE trip in Thessaloniki

CO2 Sensor Evaluation

CO Sensor Evaluation

NO Sensor Evaluation

BC Sensor Evaluation

Emissions characterization

Conclusions and next steps

- Good correlation of ReTEMS system with reference instruments in the lab
- Sufficient dynamic response for "peak events"

Possibility for tampering detection

Suitability for real-world measurements

LAT_

emisic

LENS campaign until 09/2024 with various L-vehicles

Comparison and correlation of on-road and in-lab emissions

Emission factors for different Lvehicles

Thank you for your
attention!

Contact: raptisim@auth.gr

Acknowledgments

This research has been financed by the European Union's Horizon Europe research and innovation programmes under grant agreement No. 101056777 (LENS) and grant agreement No. 862811 (RSENSE)

Horizon 2020 European Union Funding for Research & Innovation

Backup slide – Exhaust flow calculation

Exhaust flow calculation using MAP and RPM data from the OBD

VE calculated by perfoming steady state operation points on the chassis dyno and the CVS

