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Background

" Low NOy levels (MY 2027 and beyond) will present new challenges to
PEMS

— Lower levels < 50 mg/hp-hr
— 2B-MAWV analysis method

* PEMS equipment have evolved (and improved) since original
Measurement Allowance in 2006

" Objective: Update assessment of PEMS Measurement error and
variations
— Provide information for update of PEMS Accuracy Margins

— Use a Monte Carlo Model based approach
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EPA Stage 3RW Low NO, Demonstration Englne
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ReaI-WorId Duty Cycles
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- Delivery Route

* Each of these cycles is a real working
route that was driven with multiple
actual Class 7 and Class 8 trucks

" Cycles represented a wide variety of
different kinds of vehicle operations

Recorded Vehicle Data was used to
develop speed/load profiles that could
be translated for Laboratory use
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Cycle Translatlon Process Example - CARB Southern Route

Actual Vehicle Speed from

penclciRERTS Truck on Route | | = WVU drove trucks on real-
| world routes
W\U M}W 1= Recorded vehicle data used
4 along with engine torque
* curve information to generate

a Normalized engine-dyno
ol replay cycle for Lab use
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Input Data Source for Model Calibration

" Parallel data with Lab and PEMS taken on |9 different field cycle runs
— 5 duty cycles
— 3 test configurations
— repeat cycles

— ~ 130 hours of driving with Reference measurements to compare

» 3 different PEMS from 3 different manufacturers
* 3 different Raw Lab emissions benches to characterize Lab variability
— Note only | Raw Lab exhaust flow measurement

= |0 NOy sensors from 3 different manufacturers (not used in PEMS model
but available for other work...)
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PEMS and Sensor Installation (Lab Reference Upstream)
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Raw Wet NOx, ppm

PEMS vs Lab Reference - NO, Concentration
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Individual drops to zero are periodic zero or zero-

. ] span events on a given PEMS
= Al concentrations are Wet and Drift Corrected

= Overall PEMS NOy behavior very similar to Lab Reference over 6.5 hours
= Reference is average of 3 separate Lab emission benches
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Modeling and Analysis

* Prime path for the program is to use the PEMS data to train a Model of
measurement variation that could be used to run a Monte Carlo simulation

— Model can be run on any set of “Reference” data (a set of NO,/CO,/EFM traces)
— Separate model for each PEMS (or Lab Bench)

— Model validation against data from CE-CERT in-use experiment
* PEMS compared to CE-CERT Mobile Emission Laboratory (MEL) Reference

* EPA needed guidance for a PEMS Measurement Allowance for the HD-2027 FRM
(finalized in December 2022)

— Directly analyzed the |9 data sets that we had to look at levels of variation observed
* 3B-MAW analysis of PEMS vs Lab Reference

* Also conduct 3B-MAW analysis of individual Lab measurement to understand Lab
variation
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Direct Analysis from PEMS Experiment Data

Bin1
SD of PEMS Deltas 0.141065854 | 0.13533327|0.30959153
Pooled Lab variability 0.021842985
Incremental SD of PEMS 0.139364483 | 0.13355889| 0.30882001
95th Percentile Incremental Variance 0.229 0.220 0.508
Average Bias 0.059 -0.090 -0.283
Final Value = 95th Percentile+Bias 0.288 0.130 0.225
Bin 2
SD of PEMS Deltas 0.001732451 | 0.00107469| 0.00264034
Pooled Lab variability 0.000575709
Incremental SD of PEMS 0.001633997 | 0.00090748| 0.00257681
95th Percentile Incremental Variance 0.0027 0.0015 0.0042
Average Bias 0.0044 0.0008 0.0003
Final Value = 95th Percentile+Bias 0.0070 0.0023 0.0045

Using these data EPA determined the final PEMS
NO, Accuracy Margins included in HD 2027 FRM
Bin1=0.4g/hr

Bin 2 = 0.005 g/hp-hr (5 mg/hp-hr)

(40 CFR 1036.420(a) Table 1)

2b-MAW data generated for all PEMS and
Raw Lab benches for each of the 19 duty
cycles

Difference (delta) between Raw
Reference results and PEMS (or bench)
result calculated

Bias and variability of these deltas was
determined for each PEMS and Lab bench

» Pooled Lab variation subtracted from

each PEMS
High side risk based on 95 percentile of
deltas and average bias for each PEMS

— across the |19 results
POWERTRAIN ENGINEERING
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Model: Structure/Parameters/’’Calibration”’
ket ~ truth

Ground Truth

(Lab ref)

Objective:
Quantify bounds on ( alt - . );
alignment important

Estimate bounds on ( alt — . )
by Monte-Carlo of ( il — ref );

PEMS, Bench PEMS, Bench

(alt) (mdl)

Adjust md| parameters

to minimize ( - -alt)

for lab runs
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Model - Structure and Parameters

1
o 1 > 2
= ALT err
Unit Delay 1 as-modeled

large monte-Carlo
@l "D
ALT meaurenent X Transfer function (deterministic) rerr
o limited data
- || s taes is calculated every 1 second e
REF mecurement 1+alz.z-+al3.z- fal4.z- Fa1sz-4 Deterministic .\ -
o Toransrer Fonctiom Model parameters: ¢, a, lead/lag, order >+ A'LT el
Add
]“|'|,‘r . b1l
1+ac: .E'-'I'ﬂ' .E’?ﬂ' .E'iﬂ' 2'4 N ° °
Gaussian noise; e - - - Noise RandOm n0|$ |S SampIEd every 1
fixed variance - - Model parameters: b, wvarlance
Filtered noise Second
I + P — ° o
ﬁ\ﬂﬂ“r . >m1 'Q Trend (or random walk) Trend (drift) is driven by random
variance drawn from - 1 Parameters: arl, mal, variance ywalk whi isr verv zero-
ErtEl :alcsl;tr;lebrlit-lsﬂ:lnan 1 = T (xn+1 = axy t N(O, 02); Xo = O) d ¢ > eset ceve y ero
i =1 UnitDely span (or autozero) event
conbon Bhes; Biae Bias Is sampled from a
drawnairﬂcﬁ ggmﬂpg;ﬂur‘e Parameters: mixture distribution distribution after every zero-span
Each of these functions is calibrated for NO,, CO,, Exhaust (or autozero) event
Flow separately for each PEMS (or Bench)
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Remove Bias,Aligh Locally, Remove Drift — Per Segment

5Mode-ACES-Set1-5074-FINAL-csharp4.xIsx seg = 2
align, de-bias, de-trend:, rb = 1794, re = 5299, sh = -1, mu = 0.36

Initial Data Set

2000 3000 4000 5000

107 Bias

2000 3000 4000 5000

05. Trend/Drift

2000 3000 4000 5000

201 Deterministic + Noise

4000 5000
Fri Jan 19 20:28:26 2024

2000 3000
5Mode-ACES-Set1-5074-FINAL-csharp4.xlsx seg = 2.
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Structure of the Transfer Function (TF)

The Transfer Function is an ARMA model (auto-regressive moving average) that
depends on both the Reference data and the Model’s own running result

" For our model alt =TF*., we assume the following
" The value of alt x; at time t depends on m future and g past values of .
Vet oor Ter ooes Temgg
— This is the moving average (MA) part of the model

= The value of alt x; at time t also depends its own p past values x;_1, ..., X;_

uoldun4 Jajsues]

— This is the auto-regressive (AR) part of the model
* Additionally, the value of alt x; at time t also depends a random number ¢;

" X = QX1 t o+ ApXe_p + Colram T+ CiTtym-1 T+ + Cnqlt—g T D16¢

— |€,~N(0,0£) | Noise Term

" Choosing TF model means choosing the order (m, g, p) and the corresponding

coefficients to minimize the unexplained variance o/

@r 13t Annual OSAR Conference, 3/2024 POWERTRAIN ENGINEERING
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CE-CERT Validation Data Experiment

N = Usced CE-CERT MEL is Reference
= 2019MY Freightliner Truck
— 2019 DDI5 — 505hp

— o _ . " Three sets of drives (four routes) — one set for each type of
— Same three PEMS models but a different example from the
one SwRI used in each case

* Deltas generated for NO,/CO,/EFM to compare to SwRI
model

— 2b-MAW comparisons also possible
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Validation Analysis Example - PEMS A NO,

NOx: PEMS.A.NOX...Wet.DC.Aligned.ppm

95 -

.. Does the validation data i - ﬁ| I -

50 - (bIUE) fall within the range l x‘“ ifn.use:err
deSCl'ibEd by the mOdE| ‘t ® lab:as.meas
_ o lab:mdl

754

70 - (green) ? ' ® valid:as.meas

1 Does the lab data (pink) - -

£1 fall within the range " high-NOx
o1 described by the model - . iﬁf
. (green) ? ‘ ifn.use
a .’ -|I|- lab
20 ‘ 41 valid
10 -

s- A
0

6 3
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Dist of 2bmaw Bin-value Err wrt Reference

NOx: 2bmaw err Points = measured

bin 1 [g/h] bin 2 [g/p-h] Lines = simulated
P
ah])
A A :
w
Yo iR’
- ifn.use:source
ah])
= :
5 ® | lab:as.meas
4> o | labmdl
® | l[ab:mdl.ma
P
g ® | synth:mdl
4 0 . ® | synth:mdl.ma
>
. ® | valid:as.meas
T
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— - wr :...._P ©
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= ypP
7]
os) e alt
o
A
=
n
L— L » L ] >
-15 -10 -5 0 5 -0.02 -0.01 0.00 0.01
NOx: 2bmaw err measurement Mon Jan 22 12:02:17 2024
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Measurement Delta: Monte Carlo Model Run

Models built from SwRI Lo TETIETE RS
lab data '

Models validated using
CE-CERT field data

00000

Ground Truth

- | — MMM e
Measurement delta

000000000000000000000000000000

0000000000000000000000000 40000 Bih 1 E; 1 g/hr

nnnnnnnnnnnnnnnn

constructed from “third-
party reference runs”

36 leferent “Reference” Runs

Bench Model PEMS Model S
 Supplied by
(alt mdl 1,2,3) (alt mdl A, B, C) EPA/WVU/Manufacturers
e 30k-45k secs long (full days)
Monte-Carlo Monte-Carlo * NO, data scaled (via SwRI
36 runs * 401 real * 3 bench = 43308 . measurement delta > 36 runs * 401 real * 3 PEMS = 43308 model to Low NOX)

err = bench mdl —ref; by bin err = PEMS mdl — ref; by bin
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Comparing 2bmaw Bin-2 [g/hp-h]: alt vs ref

NOx: 2bmaw bin 2 [g/hp-h] alt vs ref

PEMS.C
0.100 -
Note 0.075
consistency < Final Model
of bias ' =
0 Run
between
SwRI and o equipment
CE-CERT 0.100 oEMS A
same-label o (475 NS B
. 0) -
equipment £ 0.050 5 PEMS.C
‘“_ (o
= 0,025 Ea‘”;
0.000 RaW'B
aw.
0.100
07 Initial Data
0.050 )
o set for
- Calibration

NOx: 2bmaw bin 2 [g/hp-h] alt vs ref Thu Mar 7 19:10:06 2024
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Comparing 2bmaw Bin-2 [g/hp-h]: Measurement Deltas

Black = Aggregate Distribution

Bin 2 < 0.05 All others = Individual Ref Cycle Distributions Bin 2
bin 2 [g/hp-h] bin 2 [g/hp-h]
g/h p'hr high.NOx: FALSE high.NOx: TRUE 0.05 to 0.09 g/h p‘hr
' 3
; 2
(@]
_ 0
>
' 002
NOx: 2bmaw - reference runs debug measurement Thu Mar 7 21:24:38 2024
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PEMS A Distributions and Level Dependency

Level Dependency - PEMS A

—8—5th —@—50th
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0.014
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o e
(@)
o ® |eOo
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Bin 2 Reference Level, g/hp-hr

* PEMS A does not indicate any level dependency up to 0.09 g/hp-hr

* PEMS Delta does appear to vary somewhat with duty cycle

SwRI
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PEMS B Distributions and Level Dependency

PEMS B Individual Quantiles Level Dependency - PEMS B
o . o . ) L
—@—5th —@—50th 95th —@—95th-80 95th Overall 50th Overall 5th Overall Indiv-400 Indiv-80 Avg of 35th Median of 95th Overall 95th
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2 0002 s 0.003 8 e S o o o
%] o Y e [ J o
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S .0.006 o °
A ~ 0.001
L -0.008 @
E (@]
E 0.000
-0.010
0 0.02 0.04 0.06 0.08 0.1 0.12
-0.012 Bin 2 Reference Level, g/hp-hr

Ref Cycle

= PEMS B does not indicate any level dependency up to 0.09 g/hp-hr
* PEMS Delta does appear to vary somewhat with duty cycle
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PEMS C Distributions and Level Dependency

PEMS C Individual Quantiles Level Dependency - PEMS C
® Indiv-4 O Indiv- A f 95th Medi f95th == [l 95th
—@—5th —@—50th 95th —@—95th-80 Overall 95th Overall 50th Overall 5th ndiv-400 ndiv-80 vg of 95 edian of 95 Overall 95
0.005
0.010 °

£ 0.004
[ fll Q O
- -
& 00 = 0.003
S~ CIJ\
Y 0.000 i STSWVLo e T AR S W 3 ° ? o o
Q b o o o) o)
9 ) g '\./"’5 < P 2p 30 P 40 & 0.001 oy
L - se ° '
% .0.005 i ov g€ o o S
g : < 0.000 *— o 8
L % 0 0.02 0.04 0.06 0.08 0.1 0.12
: 0.010 / ‘ a -0.001
20 v v =

(W)
(= a -0.002
2 < °

[
w -0.015 & -0.003

o
-0.004
-0.020 Bin 2 Reference Level, g/hp-hr

Ref Cycle

= PEMS C does not indicate any level dependency up to 0.09 g/hp-hr
* PEMS Delta does appear to vary somewhat with duty cycle
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95th Percentiles for All PEMS by Ref Cycle

PEMS Delta 95th Percentile, g/hp-hr

——PEMSA —e—PEMSB

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

-0.002

-0.004

Individual Cycle 95th Percentiles by PEMS

PEMSC ——PEMS A Overall

——PEMS B Overall

PEMS C Overall

e

\MWH\/\/W

5

10

15 20

Ref Cycle

25

30

35 40

* Overall no general trending — A shows more cycle variation than B and C
» Cycle 33 is an outlier low for B/C (note that 5" and 50" show A is as well)
* Cyclel5 is an outlier high for B/C
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2b-MAW PEMS Absolute Error Distribution Quantiles

Quantiles
equipment |bin ifn.use source mu. sd. g.0. g.5. g.10. g.50. g.90. g.95. g.100. 5th to 95th Spread
Bin 1 NOy, g/hr
PEMS.A 1|synth md| 14400 0.14 0.21 -0.98 -0.10 -0.02 0.11 0.30 0.48 2.07 0.58
PEMS.B 1|synth mdl| 14400 -0.13 0.27 -1.73 -0.56 -0.40 -0.10 0.08 0.26 1.38 0.82
PEMS.C 1|synth mdl| 14400 -0.30 0.36 -3.75 -0.89 -0.68 -0.25 -0.02 0.12 1.58 1.02
Raw.1 1|synth mdl| 14400 -0.01 0.04 -0.25 -0.08 -0.06 0.00 0.04 0.06 0.20 0.14
Raw.2 1|synth mdl| 14400( 0.01 0.03 -0.16 -0.03 -0.02 0.01 0.05 0.07 0.23 0.10
Raw.3 1|synth mdlI 14400 -0.01 0.04 -0.23 -0.07 -0.05 -0.01 0.04 0.05 0.29 0.12
Quantiles
equipment | bin ifn.use source mu. sd. g.0. g.5. g.10. g.50. g.90. q.95. g.100. 5th to 95th Spread
Bin 2 NOy, g/hp-hr
PEMS.A 2[synth mdl| 14400| 0.0057 0.0024 | -0.0092 | 0.0023 0.0032 0.0057 0.0086 | 0.0096 | 0.0150 0.0074
PEMS.B 2[synth mdl| 14400| 0.0005 0.0021 | -0.0153 | -0.0029 | -0.0019 | 0.0006 0.0030 | 0.0038 | 0.0090 0.0067
PEMS.C 2[synth mdl| 14400| -0.0037 | 0.0034 | -0.0258 | -0.0100 | -0.0080 | -0.0033 | 0.0001 0.0011 0.0110 0.0111
Raw.1 2 [synth mdl| 14400| -0.0001 | 0.0011 | -0.0057 | -0.0019 | -0.0014 | -0.0001 | 0.0012 0.0017 0.0054 0.0036
Raw.2 2 [synth mdl| 14400| 0.0003 0.0008 | -0.0042 | -0.0008 | -0.0005 | 0.0002 0.0012 0.0016 | 0.0059 0.0024
Raw.3 2|synth md| 14400( -0.0002 0.0009 -0.0048 | -0.0018 | -0.0014 | -0.0002 0.0009 0.0012 0.0042 0.0030
. PEMS, more consistent, and

Lab distributions (Raw.
show almost no bias

PEMS distributions show varying levels of bias and wider (more varied) spreads
POWERTRAIN ENGINEERING
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Calculation of Incremental PEMS Error

Values shown for PEMS A/B/C are after subtraction of the Lab
PEMS 95th percentile — Lab 95t percentile (or PEMS 5t — Lab 5t")

Bin 1 NO,, g/hr

5th Percentile| 50th Percentile 95th Percentile
PEMS A -0.037 0.109 0.416
PEMS B -0.501 -0.101 0.197
PEMS C -0.831 -0.250 0.061
labAvg |  -0.062 -0.001 0.061

Bin 2 NO,, g/hp-hr

5th Percentile| 50th Percentile 95th Percentile
PEMS A 0.0038 0.0057 0.0081
PEMS B -0.0014 0.0006 0.0023
PEMS C -0.0085 -0.0033 -0.0005
Lab Avg " -0.0015 0.0000 0.0015

Final Incremental Results
for Each PEMS

How do we use these to
generate a
recommendation for
accuracy margins ?

POWERTRAIN ENGINEERING
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Aggregated Distributions for PEMS and Lab

Treat Raw.N and PEMS.X Encounters as Random and Aggregate - Solid Blue and Solid Red

NOx: 2bmaw - a proposal to incremental PEMS allowance
bin 1 [g/h] bin 2 [g/hp-h]

MeY

ifn.use:source:equipment

synth:mdl:PEMS

synth:mdl:PEMS.A
synth:mdl:PEMS.B
synth:mdl:PEMS.C

scaled

synth:mdl:Raw
synth:mdl:Raw.1

INEEEEE

synth:mdl:Raw.2

synth:mdl:Raw.3

SW3d

-4 -2 0 2 -0.02 -0.01 0.00 0.01
NOx: 2bmaw - a proposal to incremental PEMS allowance measurement Thu Mar 7 22:57:53 2024
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Aggregated Quantiles and Incremental Error
Aggregated Quantiles for PEMS and Lab

bin bin.txt generic n g.5. g.50. g.95.

1 bin 1 [g/h] PEMS 43308 -0.660 -0.063 0.329

1 bin 1 [g/h] Raw 43308 -0.06706 0.00023 0.06084

bin 2

2 PEMS 43308 -0.007 0.001 0.008
[g/hp-h]
bin 2

2 Raw 43308 -0.00161 0.00001 0.00152
[g/hp-h]

PEMS Incremental Error for Aggregated Data Sets

5th Percentile| 50th Percentile|95th Percentile

F

Bin 1, g/hr -0.593 -0.063 0.268

Bin 2, g/hp-hr -0.0054 0.0008 0.0065

POWERTRAIN ENGINEERING

swri.org
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U.S. In-Use Compliance - 2B-MAW / 3B-MAW Basics

= Utilized in test runs of nearly any length

— There are some minimums for number of % ~
windows in each bin < J / //
— Still require at least 3 hours of non-idle é:m / ‘\ A{L Jﬂ /f /
operation for a valid test day g W \J i [A \ U L
* The entire data set is utilized including cold-start | ’ Sime (min] - " *

* The xB-MAW method uses a fixed-length 300-second average CARB In-Use NO, Standards

window -
Normalized CO,
» Average window is stepped through the data file in |-second RENES 2024-2029 2050

increments 1—Idle < 6% < 2 x Idle Standard < 1.5 x Idle Standard
. . . . 2-L Load 6% to 20% < 2 x LLC Standard < 1.5 x LLC Standard
= Each window is sorted into one of 3 load bins based on oW oS ° X ender X nander
“normalized COZ” 3 - Mid-High Load > 20% < 2 x FTP Standard < 1.5 x FTP Standard
— NOy mass (all bins) and CO, mass (Bins 2 and 3) EPA In-Use Standards
— For EPA Bins 2 and 3 are combined into a single bin Off CycleBin |NOx | Temperature adjustment® | 1o | PV | &5

mg'hp-hr | mgthphr | ghphr
Bin 1 10.0 g/hr (25.0 — Tapp) - 0.25 — — —

= A sum-over-sum calculation is done for each bin to generate final - -
. . . . in2 25.0 — Topp) - 2.2 _
numbers (Bin | is just NOy mass rate in g/hr) ® metphe | ¢ - B R b

@r 13t Annual OSAR Conference, 3/2024 POWERTRAIN ENGINEERING
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Example of 3B-MAW Window Sorting and Bin Value Accumulation

100

Vehicle Speed [mph] -or- Norm CO2[%]
3

R5952-SNTE-Stage3RW-800k Miles

BSNOXx [g/hp-hr]
o
o
w

90 S I S SR - T A .
] T I D - . I S S - = I
O - . - - R ] s m
V. v .
) w\ / 1}“‘1"”“*. M [
]‘ l ll
i Y L..:-J
5000 10000 15000 20000
Vehicle Speed Normalized CO2 B Binl B Bin2 B Bin3
3000 6000 9000 12000 15000 18000 21000
—Bin2 BSNOx —Bin3 BSNOx ——Binl Mass Rate = Binl = Bin2 = Bin3

@SOUTHWEST RESEARCH INSTITUTE

- 3.0
- 2.5
- 2.0
- 150
- 1.0
- 0.5
- 0.0

T
- N w
Bin

- 4.0

X Mass Rate [g/h]

Bin -or- N

EPA now
combines Bin 2
(green) and Bin
3 (purple) in
one bin
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