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Outline

• Distributed Autonomy
–Homogeneous vs Heterogeneous
–Vehicle Interaction
–Cooperative & Collaborative 

• Rule Based & Equation Based Approaches

• Vehicles and Architectures

• Intended Applications



What is Distributive Autonomy?
• Multiple Vehicles

• Vehicles perform autonomous behaviors using 
localized processing (on vehicle)

• Vehicles are “connected”
–Share local state to neighboring (or farther) 
– Individual vehicle  to Infrastructure (V2I)
– Individual vehicle to Individual vehicle(V2V)

• Composition Types:
–Homogeneous Compositions
–Heterogeneous Compositions
–Mixed 



Composition Types
• Homogeneous Compositions

–Swarms
–Same vehicle type
–Same vehicle purpose
–Redundancy through replacement

• Heterogeneous Compositions
–Teams/Clusters
–Different vehicle type
–Different purpose
–Redundancy via similar capabilities using 

different methods of implementation
• More resilient to common error



Distributive Use Cases

• Mapping unknown Environments
–Quickly 
–Hostile

• Search and Rescue / C4-ISR Applications

• Logistics & Transportation of goods
–Connected Vehicles “Transportation Trains”
–Warehouse Automation

• Dynamic Vehicle Routing
– Incident rerouting
–Control for vehicle flow without devices i.e. 

signals



Distributed Processing 
• Pure Centralized 

–Significant I/O bandwidth required
–Significant Processor Bandwidth required
–State for each vehicle is always known if 

connected
• Is this necessary?

• Pure Decentralized
–Dynamic neighbor
–100% of all vehicle state is unknown at any 

time is difficult
• Data can be propagated throughout network
• It 100 % of all state data from 

• Hybrid -> Combination of both1



Vehicle Behavior

• Fundamental to any structure is vehicle 
behavior 

• Moreover Vehicle Interaction!

• Vehicles can “do their own thing” regardless of 
other vehicles

• Consequences: even with avoidance – depending 
on vehicle density 

• The Higher vehicle density - the lower the 
ability to perform task



Describing Vehicle Interaction

• Rule Based
• Equation Based

• Systems are Very Complicated & Complex
–Homogeneous to a lesser degree
–Heterogeneous to a larger degree
–Subject to Initial Conditions

• How to ensure individual objects are met based 
on the code of the individual?

– Individually vehicles algorithms can be 
complete, and computable

–Consider more than one vehicle…



Cooperative Autonomy2
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• Simple Scenario

• Given one Vehicle

• Path from Point  A 
to Point A’
–A*, D*
–Wall Following
–Bug Algorithms
–Potential Fields
–  :
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V2 V1

Vehicle V1 and Vehicle V2 can 

both perform the task while 

cooperating with one another
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• Simple Scenario

• Given Two Vehicles 
– Homogeneous
–Change 

Destinations…

• Are they really 
Cooperative???
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• Given Two Vehicles 
– Homogeneous

• By Looking at code 
only and knowing 
each codebase 
worked – was this 
predictable?

Vehicles are not cooperable X
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• Simple Scenario

• Given Two Vehicles 
– Homogeneous

• By Looking at code 
only and knowing 
each codebase 
worked – was this 
predictable?
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A2’The system would oscillate back 

and forth unable to reach the 

desired goal state => unstable 

unless checked for oscillation. 

System unable to attain goal

X

X



• Simple Scenario

• Given Two Vehicles 
– Heterogeneous

–V2 rotates 180
–Follows V1 
–Rotates back 180 

to desired pose

–Method to detect 
cooperative 
before testing?
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• Given Two Vehicles 
– Heterogeneous

–V2 rotates 180
–Follows V1 
–Rotates back 180 

to desired pose

–Method to detect 
cooperative 
before testing?
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• This was using a 
rule-based approach

• If detected that 
oscillation exists 
then only one can 
updates its behavior

• The approach is ad-
hoc and require 
testing to ensure 
closure

• System is sensitive 
to initial conditions

Cooperative Autonomy
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Collaborative Autonomy

• Given two vehicles must find and push a pipe



Collaborative Autonomy

• If avoiding each other & at Midpoint push -> 
uncooperative



Collaborative Autonomy

• Selecting an end symmetric about each end 
–> Cooperative, not Collaborative



Collaborative Autonomy

• Selecting an end symmetric about each end 
–> Cooperative and Collaborative



Vehicle Interactions are Complex

• Large complex vehicle systems are Complex 
Systems

• A Complex System Exhibits3 :
–Large Number of Interacting Agents
–Exhibit Emergent Self Organizing Behavior

• This can be difficult to anticipate from individual 
behavior

–Their Behavior does not result from the 
existence of a centralized controller

• Complex Systems are non-linear4

• Consider Defining System Stability as that of a 
Complex System



Rule Based Vehicle Behaviors

• Vehicle Behaviors can be described using Rule 
Based Methods
–BOIDS
–Predator Prey
–Formation Flow -> Follow The Leader etc…
–Conway’s Life

• Simple Rules can exhibit complex interactions

• Using a set of Rules how does the designer know 
if the system will perform its intended purpose?

–Rule Based Systems are Ad-Hoc
–What was the reasoning for the original rules



BOIDS5,6

• First published in 1986 by Craig Reynolds
–Three simple rules exhibit flocking

Separation Alignment Cohesion



Extensions and Use of Boids

• Boids was extended to perform Distributed Mapping 
by adding additional rules7

• Efficient to map a given region by use of Distributed 
Autonomy

• Implemented in Python and Simulated via Coppelia
Simulation Software

• Boids is found to be a stable system7

• Boids has been realized in both Rule Based and 
Expression based models8

Boundary

 Avoidance

Eccentricity Boundary

Cohesion
Velocity Gradient



Extensions and Use of BOIDS

Boundary Avoidance: Boids Steer towards the mapped area when 
reading a predefined border.  Achieved by modifying the steering 
vector.  As the boid travels further away from the map, the 
steering vector increases

Eccentricity: Due to aggregation causing concentration of boids
forcing mapping inefficiencies, ‘time-in-group’ is used to allow 
boid to steer away from neighbor group into new direction. 

Boundary Cohesion: To prevent missing regions to map, due to 
perpendicular avoidance, this allows the boid to stay within a 
distance from an edge.

Velocity Gradient: The further away a boid is from the leading 
edge, the velocity of the boid is increased.  This results in creating 
fronts vs bounded clusters



Describing Dist. Complex Systems 
with Expressions

• Formation Flow -> Follow the Leader 
• Predator–Prey10 (Lotka-Voltera equations)

X           population density of prey

Y           population density of predator

dx/dt     growth rate of the prey population

dy/dt     growth rate of the predator population

α, β prey growth rate and effect of predation on prey

γ, δ predator death rate and effect of presence prey on predation 
growth rate

where



Predator–Prey Implications

• Coupled non-linear system

• Predator Prey can be decomposed into Lyapunov 
Functions to demonstrate Stability10,11

• Effort to decompose General Rule Based Systems 
into Expressions 

• Apply Lyapunov Function Composition to rule 
decompositions

• Provide ability to assess stability for generalized 
Dist. Systems vs Ad-Hoc approaches

where



Implementation of Dist. Autonomy

• Ideally a system is known to be stable prior 
implementation

• Simulation of complex dynamical systems with 
complicated hardware is difficult to simulate
–Computational resources, Sim time, etc…

• Utilize autonomous mobile robots exhibiting 
behaviors as described in existing and TBD 
algorithms

• Develop method using Lyapunov Functions to 
decompose rules into expressions to determine 
distributed system stability



Using Mobile Robots 

• Received a donation of 60 autonomous robots 
from iHerb Corp.

• Originally developed for logistic warehouse 
applications

• Based upon hybrid Centralized System Arch.

• Robots were designed / developed inhouse with 
advanced engineering teams including: 
–Mechanical
–Electrical
–Firmware
–Embedded Software
–Vehicle Management Software



iHerb Robots – Baseline 

• Carrying Capacity of 500Ks @ 
up to 5m/s

• Motors & Drive
– Differential Drive => 2 

BLDC Motors
– 1 Platform BLDC Motor 
– 1 Lift BLDC Motor

• Sensors
– 1024 CPR quadrature 

encoder per motor
– Intel Realsense Depth 

Sensors
– Top & Bottom Integrated 

Cameras



iHerb Robot Processing

• Vehicles Received Commands 
from Central pub/sub

• Used QR Codes on ground for 
localization

• Internal Processing include:
– iMX7 Dual Core ARM 

Application Processor w/ 
M4 core

– Embedded Linux

– 4 M0 ARM Processor for 
Commutation Control

– Xilinx Zynq 7020 FPGA 
(Fabric + 2 ARM Processors)



Baseline Architecture / Controls

M0 Motor 

Commutation

System UI Vehicle 
Controller

M1 – M4 Encoder Data 
1-4

Fiducial 
Camera 

ODS
(RealSense)

MOTS P71 Two Single Channel Controller

Low Level Sensor 

Processing



New Processing Architecture
• Implement a ROS2 DDS Pub/Sub-Based Approach with 

Ethernet Backplane

• Multi-Processor Design
– iMX7 => nVidia Orin

• Sensor Fusion, Image Processing and Behavior Processing

• BLDC Commutation M0 ARM => FPGA Fabric

• P71 Motion Control => FPGA ARM Processors

• Sensors to be Added:
– Velodyne 3D Lidar, IMU, Additional Camera(s), UWB  

Localization via Qorvo Modules

• 3 Spirals
– Each Spiral adds new feature while updating existing 



CPP Vehicle Processing Architecture

Low Level Motion 
ControllerR

Low Level Sensor Processor

Behavior 
ProcessingR

Data FusionR

System 
DiagnosticsR

Image / 
spatial 

ProcessingR

COTs Motor Drivers

LocalizationR

• MAP
Internal 
Sensors 

Encoders

Nucleo ARM

Camera 1

RealSenseR

Inter 
Vehicle 

Com

Intra Vehicle Communication ChannelsR

M1 – M4

Spiral 1

R: ROS2 NODE
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System 
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CPP Driver Electronics

LocalizationR

• MAP
• UWB
• IMU
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3D LIDARR
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Vehicle 
Com

IMU 

Intra Vehicle Communication ChannelsR

Communication 
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Spiral 2

Camera 1

R: ROS2 NODE

Sonar 



CPP Vehicle Processing Architecture
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Realtime Motion Controller
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Multi-Channel Controller
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Vehicle Use Cases 
• Use CPP Pathway network as road network for ITS scenarios using 

Distributed Behavior Control Methods

– Rule Based (BOIDS etc.) / Expression Based => Rule Closure

• Realtime Road-Network Image Segmentation12 (recently completed 
work)

• Dynamic Mapping 

• V2V, V2I => Dynamic Routing / Rerouting, Non-infrastructure Control

• Physically Connected Vehicle load sharing / Virtual Train



Thank You 

Questions???
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