Cooperative and Collaborative Distributed Autonomy

Dr. Scott Boskovich

smboskovich@cpp.edu

Electromechanical Engineering Department College of Engineering Cal Poly Pomona

Outline

- Distributed Autonomy

 Homogeneous vs Heterogeneous
 Vehicle Interaction
 Cooperative & Collaborative
- Rule Based & Equation Based Approaches
- Vehicles and Architectures
- Intended Applications

What is Distributive Autonomy?

- Multiple Vehicles
- Vehicles perform autonomous behaviors using localized processing (on vehicle)
- Vehicles are "connected"

 Share local state to neighboring (or farther)
 Individual vehicle to Infrastructure (V2I)
 Individual vehicle to Individual vehicle(V2V)
- Composition Types: —Homogeneous Compositions —Heterogeneous Compositions —Mixed

Composition Types

- Homogeneous Compositions
 - -Swarms
 - -Same vehicle type
 - -Same vehicle purpose
 - -Redundancy through replacement
- Heterogeneous Compositions
 - -Teams/Clusters
 - -Different vehicle type
 - -Different purpose
 - -Redundancy via similar capabilities using different methods of implementation
 - More resilient to common error

Distributive Use Cases

- Mapping unknown Environments

 Quickly
 Hostile
- Search and Rescue / C4-ISR Applications
- Logistics & Transportation of goods

 Connected Vehicles "Transportation Trains"
 Warehouse Automation
- Dynamic Vehicle Routing

 Incident rerouting
 Control for vehicle flow without devices i.e. signals

Distributed Processing

- Pure Centralized

 Significant I/O bandwidth required
 Significant Processor Bandwidth required
 State for each vehicle is always known if connected
 - Is this necessary?
- Pure Decentralized
 - -Dynamic neighbor
 - 100% of all vehicle state is unknown at any time is difficult
 - Data can be propagated throughout network
 - It 100 % of all state data from
- Hybrid -> Combination of both¹

Vehicle Behavior

- Fundamental to any structure is vehicle behavior
- Moreover Vehicle Interaction!
- Vehicles can "do their own thing" regardless of other vehicles
- Consequences: even with avoidance depending on vehicle density
- The Higher vehicle density the lower the ability to perform task

Describing Vehicle Interaction

- Rule Based
- Equation Based
- Systems are Very Complicated & Complex —Homogeneous to a lesser degree —Heterogeneous to a larger degree —Subject to Initial Conditions
- How to ensure individual objects are met based on the code of the individual?

Individually vehicles algorithms can be complete, and computable
Consider more than one vehicle...

Cooperative Autonomy²

- Simple Scenario
- Given *one* Vehicle
- Path from Point A to Point A' -A*, D* -Wall Following -Bug Algorithms -Potential Fields

- Simple Scenario
- Given *one* Vehicle
- Path from Point A to Point A' -A*, D*
 Wall Following
 Bug Algorithms
 Potential Fields

Vehicle V1 can perform the task while cooperating with itself

- Simple Scenario
- Given *Two* Vehicles
 Homogeneous
- Are they really Cooperative???

Vehicle V1 and Vehicle V2 can both perform the task while cooperating with one another

- Simple Scenario
- Given *Two* Vehicles
 Homogeneous
- Are they really Cooperative???

Vehicle V1 and Vehicle V2 can both perform the task while cooperating with one another

- Simple Scenario
- Given *Two* Vehicles

 Homogeneous
 Change
 Destinations...
- Are they really Cooperative???

Vehicle V1 and Vehicle V2 can both perform the task while cooperating with one another

- Simple Scenario
- Given *Two* Vehicles
 Homogeneous
- By Looking at code only and knowing each codebase worked – was this predictable?

Vehicles are not cooperable

- Simple Scenario
- Given *Two* Vehicles
 Homogeneous
- By Looking at code only and knowing each codebase worked – was this predictable?

Vehicle V1 and Vehicle V2 impede each other unable to reach their destination

- Simple Scenario
- Given *Two* Vehicles
 Homogeneous
- By Looking at code only and knowing each codebase worked – was this predictable?

The system would oscillate back and forth unable to reach the desired goal state => unstable unless checked for oscillation. System unable to attain goal

- Simple Scenario
- Given *Two* Vehicles
 Heterogeneous
 - -V2 rotates 180
 -Follows V1
 -Rotates back 180
 to desired pose
 - Method to detect cooperative before testing?

Vehicle 1 and Vehicle 2 are cooperative

- Given *Two* Vehicles
 Heterogeneous
 - -V2 rotates 180
 -Follows V1
 -Rotates back 180
 to desired pose
 - Method to detect cooperative before testing?

Vehicles are now different types, or one has evolved its behavior to become different

- This was using a rule-based approach
- If detected that oscillation exists then only one can updates its behavior
- The approach is adhoc and require testing to ensure closure
- System is sensitive to initial conditions

• Given two vehicles must find and push a pipe

 If avoiding each other & at Midpoint push -> uncooperative

 Selecting an end symmetric about each end -> Cooperative, not Collaborative

Selecting an end symmetric about each end
 -> Cooperative and Collaborative

Vehicle Interactions are Complex

- Large complex vehicle systems are Complex Systems
- A Complex System Exhibits³:

 Large Number of Interacting Agents
 Exhibit Emergent Self Organizing Behavior
 - This can be difficult to anticipate from individual behavior
 - -Their Behavior does not result from the existence of a centralized controller
- Complex Systems are non-linear⁴
- Consider Defining System Stability as that of a Complex System

Rule Based Vehicle Behaviors

- Vehicle Behaviors can be described using Rule Based Methods
 - BOIDS
 Predator Prey
 Formation Flow -> Follow The Leader etc...
 Conway's Life
- Simple Rules can exhibit complex interactions
- Using a set of Rules how does the designer know if the system will perform its intended purpose?

Rule Based Systems are Ad-Hoc
What was the reasoning for the original rules

BOIDS^{5,6}

First published in 1986 by Craig Reynolds

 Three simple rules exhibit flocking

Separation

Alignment

Cohesion

Extensions and Use of Boids

- Boids was extended to perform Distributed Mapping by adding additional rules⁷
- Efficient to map a given region by use of Distributed Autonomy
- Implemented in Python and Simulated via Coppelia Simulation Software

Boundary Avoidance

Eccentricity

- Boids is found to be a stable system⁷
- Boids has been realized in both Rule Based and • Expression based models⁸

Extensions and Use of BOIDS

Boundary Avoidance: Boids Steer towards the mapped area when reading a predefined border. Achieved by modifying the steering vector. As the boid travels further away from the map, the steering vector increases

Eccentricity: Due to aggregation causing concentration of boids forcing mapping inefficiencies, **'time-in-group'** is used to allow boid to steer away from neighbor group into new direction.

Boundary Cohesion: To prevent missing regions to map, due to perpendicular avoidance, this allows the boid to stay within a distance from an edge.

Velocity Gradient: The further away a boid is from the leading edge, the velocity of the boid is increased. This results in creating fronts vs bounded clusters

Describing Dist. Complex Systems with Expressions

- Formation Flow -> Follow the Leader
- Predator-Prey¹⁰ (Lotka-Voltera equations)

$$egin{aligned} rac{dx}{dt} &= lpha x - eta xy, \ rac{dy}{dt} &= \delta xy - \gamma y, \end{aligned}$$

- X population density of prey
- Y population density of predator
- dx/dt growth rate of the prey population
- dy/dt growth rate of the predator population
- α , β prey growth rate and effect of predation on prey
- $\gamma,\,\delta$ $\,$ predator death rate and effect of presence prey on predation growth rate

Predator-Prey Implications

- Coupled non-linear system
- Predator Prey can be decomposed into Lyapunov Functions to demonstrate Stability^{10,11}
- Effort to decompose General Rule Based Systems into Expressions
- Apply Lyapunov Function Composition to rule decompositions
- Provide ability to assess stability for generalized Dist. Systems vs Ad–Hoc approaches

Implementation of Dist. Autonomy

- Ideally a system is known to be stable prior implementation
- Simulation of complex dynamical systems with complicated hardware is difficult to simulate –Computational resources, Sim time, etc...
- Utilize autonomous mobile robots exhibiting behaviors as described in existing and TBD algorithms
- Develop method using Lyapunov Functions to decompose rules into expressions to determine distributed system stability

Using Mobile Robots

- Received a donation of 60 autonomous robots from iHerb Corp.
- Originally developed for logistic warehouse applications
- Based upon hybrid Centralized System Arch.
- Robots were designed / developed inhouse with advanced engineering teams including:
 - -Mechanical
 - -Electrical
 - Firmware
 - -Embedded Software
 - -Vehicle Management Software

iHerb Robots – Baseline

- Carrying Capacity of 500Ks @ up to 5m/s
- Motors & Drive
 Differential Drive => 2
 BLDC Motors
 - 1 Platform BLDC Motor
 - 1 Lift BLDC Motor
- Sensors
 - 1024 CPR quadrature encoder per motor
 - Intel Realsense Depth Sensors
 - Top & Bottom Integrated Cameras

iHerb Robot Processing

- Vehicles Received Commands from Central pub/sub
- Used QR Codes on ground for localization
- Internal Processing include:

 iMX7 Dual Core ARM
 Application Processor w/ M4 core
 - Embedded Linux
 - 4 MO ARM Processor for Commutation Control
 - Xilinx Zyng 7020 FPGA (Fabric + 2 ARM Processors)

Baseline Architecture / Controls

CRUI MAAL

New Processing Architecture

- Implement a ROS2 DDS Pub/Sub-Based Approach with Ethernet Backplane
- Multi-Processor Design
 iMX7 => nVidia Orin
 - Sensor Fusion, Image Processing and Behavior Processing
- BLDC Commutation MO ARM => FPGA Fabric
- P71 Motion Control => FPGA ARM Processors
- Sensors to be Added:

– Velodyne 3D Lidar, IMU, Additional Camera(s), UWB Localization via Qorvo Modules

• 3 Spirals

– Each Spiral adds new feature while updating existing

CPP Vehicle Processing Architecture

CALL CARCE IN

ANTAR

CPP Vehicle Processing Architecture

ELE CARLES

CPP Vehicle Processing Architecture

CALL OR OCH

CHUI CARCEL

Vehicle Use Cases

- Use CPP Pathway network as road network for ITS scenarios using Distributed Behavior Control Methods
 - Rule Based (BOIDS etc.) / Expression Based => Rule Closure
- Realtime Road Network Image Segmentation¹² (recently completed work)
- Dynamic Mapping
- V2V, V2I => Dynamic Routing / Rerouting, Non-infrastructure Control
- Physically Connected Vehicle load sharing / Virtual Train

Thank You

Questions???

References

- 1. Boskovich, Barth "Vehicular network rerouting autonomy with a V2V, I2V and V2I communication matrix classification", *16th* International IEEE Conference on Intelligent Transportation Systems, Oct, 2013.
- 2. Boskovich, S., A Distributed Approach to Dynamic Routing Algorithms Based on Vehicle-to-Vehicle Interaction, University of California, Riverside, March 2015.
- 3. Newman, M. E. J. (2011). Resource letter. cs-1: Complex systems. *American Journal of Physics, 79*, 800–810.
- Bianconi, G., Arenas, A., Biamonte, J., Carr, L. D., Kahng, B., Kertesz, B., Kurths, J., Lü, L., Masoller, C., Motter, A. E., et al. (2023). Complex systems in the spotlight: Next steps after the 2021 nobel prize in physics. *Journal of Physics: Complexity, 4*(1), 010201.
- 5. <u>Reynolds, Craig</u> (1987). "Flocks, herds and schools: A distributed behavioral model". Proceedings of the 14th annual conference on Computer graphics and interactive techniques. <u>Association for Computing Machinery</u>. pp. 25–34.
- 6. Wikipedia, access 12/4/2023, BOIDS
- Boskovich, Sherman, "Application of a Modified Boids Algorithm for Navigation and Mapping with a System of Small UAVs", *American Institute of Astronautics and Aeronautics Scitech Forum*, San Diego CA, Jan., 2019
- 8. Tanner, Jadbabai, Pappas, "Stability of Flocking Motion" Technical Report No. MS-CIS-03-03, University of Pennsylvania
- Sharma, Vanualailai, Rag, "Obstacle and Collision Avoidance Control Laws of a Swarm of Boids", World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical and Quantum Engineering, Vol. 8, No. 2, 2014.
- 10. Wikipedia Access 12/4/2023 Predatory-Prey
- 11. Boukal, Krivan, "Lyapunov functions for Lotka-Volterra predator prey models with optimal foraging behavior", *Journal of Mathmatical Biology*, pp 493-517, Springer, 1999
- 12. Weigel, Cameron, "LiDAR and Camera Scene Understanding Methods and the Construction of a Small-scale Autonomous