DIGITAL LAB e R T
DEVE LOPM ENT’“ —L- | EMISSIONS
SOLUTIONS t 7 i —— : &

ELECTRIFICATION

P

CAV

od

HORIBA Intelligent Lab

Rapid Development methodologies for Prediction of Real-world
Performance and Emissions using a Powertrain Empirical
Digital Twin
Phil Roberts — Technical Specialist, Propulsion Research and Development

Application Centre of Competence — Emissions — HORIBA MIRA, UK
17t March 2022

HORIBA

Automotive



Agenda

. Digital Twinning Methodology
. Empirical Model Validation
. Hotspot Results

. Methodology Effectiveness

. Conclusions

HORIBA

Automotive




Agenda

. Digital Twinning Methodology
. Empirical Model Validation

. Hotspot Results

. Methodology Effectiveness

. Conclusions

HORIBA

Automotive




Introduction

® A powertrain performance and emissions digital twin for a light-duty passenger vehicle has been developed. It utilises HORIBA's Intelligent Lab

solutions including Powertrain-in-the-Loop, dynamic Design of Experiments and environmental emulation hardware methodologies.

® Performance and emissions can be predicted using the digital twin for real-world driving scenarios with reduced reliance on physical and

extensive engine and vehicle testing (climatic test trips and prototype machines).

® This enables the early and faster than real-time identification of unfavourable areas of the powertrain operating map or real-world driving

scenarios where performance and emissions output are undesirable; known as “hotspots”.

® Traditional calibration methods can then be adopted to mitigate these “hotspots” resulting in an improved cycle result.
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Digital Twin Methodology

¢ Euro 6d RDE boundary conditions of altitude and temperature split into 15 sections; dynamic DOE designs created for each section.

® The dynamic DOE designs have four design parameters: engine speed, accelerator pedal position, altitude (pressure) and temperature

® The digital twin accounts for the effects engine speed, load and the environment on performance and emissions.
¢ Dynamic designs ran on a contemporary light-duty 4-cylinder, 2 litre diesel powertrain.

¢ Training data captured, models created, models validated, predictions made.
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Powertrain-in-the-Loop Configuration
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1000

Altitude [m]

a
[=]
o

10 7 4

)
Iy
=)

0.0 10.0 20.0
Ambient Temperature [°C]

Particular altitude and temperature section

30.0 35.0

Accelerator pedal position [%]

| —
® -
u A -
iy
M — :: 523
HORIBA Dynas PM470 -
Engine Dynamometer
r-r-—-————=—=—-—=—=—=—=—=—=-=—==~=—=~=-==== o —--=-=-=-=-="

,,,,,,,,,,,,,,,,,,,,,,

0

T L T - T T T+ T — 1T 1T 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Engine speed [rev/min]

Global engine speed and accelerator pedal test sequence

|
|
|
|
|
|
|
|
|
|
|
|
|
ol



Environmental Emulation using HORIBA MEDAS

¢ HORIBA MEDAS has a key role in developing the digital twin and is used for environmental emulation.

® Shown here is a schematic of how the powertrain is configured with MEDAS. This system can also be used as part of a chassis dyno setup.

. p—
Exhaust to Outside . = .
MEDAS is unique in the marke
S— :
MEDAS Intake T With the best support behind N -
L oot = V] ' {
Air In 3 _ /
< )
o)
o
3
—
Crawl Space
00
More than 40
: Bypass HORIBA Dynas PM470 systems
g Engine Dynamometer TR
w m 2018
= | Q
S l:[:]ﬂ " 5
- [ ®
<0 - o
w = | \@]} 1
v s a/a e
_—
— R

HORIBA

Automotive



Dynamic Design Example

¢ Sample dynamic design shown below for Section 1 altitude and temperature.

® Typical dynamic design is ~6 hours; therefore ~90 hours total testing time to dynamically map the engine across Euro 6d boundary conditions.

® No aftertreatment fitted to the engine; all models were generated with a warm engine.
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Empirical Model Validation (1)

¢ Performance and emissions models were created using the training data from the powertrain and Ricardo Efficient Calibration DOE Toolkit
¢ Real-world driving cycles were used to validate model accuracy.
® Real-world driving cycles ran on the real powertrain; engine speed, acc pedal position and MEDAS pressure and temperature used with models

® Determine measured vs. predicted correlation for several powertrain attributes. Accurate models can then be used for P&E predictions.
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Air mass flow [kg/h]

Fuel mass flow [kg/h]

Empirical Model Validation (2)
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Deployment of the Powertrain Digital Twin

® The validated empirical performance and emissions models were coupled with IPG CarMaker real-world driving scenario development software.

® Real-world driving scenarios can be ran in simulation; powertrain performance and emissions predicted accordingly.
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Hotspot Screening (1)
Models from Section 1

® Engine out cycle CO2 and NOXx predicted for different driving styles and traffic densities for an RDE route at 500m (95kPa), 35°C.
® 11% and 8% variation in CO2 and NOx respectively due to changes in driving style and traffic density — all are completely compliant RDE cycles.

® This type of analysis provides an insight into unfavourable RDE conditions across a given route and environmental profile.
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Hotspot Screening (2)
Models from Section 1

® Take engine out NOx data from previous slide and assume 90% SCR efficiency.

® Tailpipe NOx (mg/km) shown accordingly. Euro 6d real driving emissions limit highlighted by the red line.
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Hotspot Screening (3)
Models from Section 1

® Take engine out NOx data from previous slide and assuming 92% SCR efficiency.

® Tailpipe NOx (mg/km) shown accordingly. Euro 6d real driving emissions limit highlighted by the red line.
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Hotspot Screening (4)
Models from Section 1

¢ Take engine out NOx data from previous slide and assuming 95% SCR efficiency.

® Tailpipe NOx (mg/km) shown accordingly. Euro 6d real driving emissions limit highlighted by the red line.
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Multiple Vehicles, Common Powertrain

¢ Powertrain sharing is commonplace amongst light-duty OEMs.

® Prediction of performance and emissions for multiple vehicles sharing a common powertrain is possible utilising a single digital twin.

Test Scenario Dynamic Empirical Models Predictions
Vehicle, Terrain and Environme Performance and emission Fuel, air, NOx, PN, NH
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Methodology Effectiveness (1)
Light-duty Vehicle Example

Time for covering all moderate and extended RDE boundary conditions

50

Physical testing
Model creation
Validation cycles |
Simulation and prediction --------

45 -

_______________

® Physical testing using vehicle

40 -

— 45 days physical testing (2 shifts per day) to cover the RDE (or

other) boundary conditions; allows for changes in vehicle 35 --------------- --------
operating “style” and other stochastic instances. 20
— Does not including timings for logistics or travel to locations to % :

o : i : N ]
meet the climatic requirements and assuming right-first-time 0 29 | | | | | |
testing. = xd B . R ]

® Hotspot using EiL and dynamic DOE: 15 _
— 13.6 days for the complete RDE (or other) boundary conditions
10
— Evaluation of additional vehicles is ~0.5 days per vehicle
. 5 —
¢ Effectiveness
— For one vehicle, ~70% reduction in test time using Digital Twin 0- Vehicle Testing Engine Testing & Simulation
_ Vehicle Testing Engine Testing and Simulation
Physical testing [days] 45 5.6
Model creation [days] 1.9
Validation cycles [days] 5.6
Simulation and prediction [days] 0.5
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Methodology Effectiveness (2)

Time for covering all moderate and extended RDE boundary conditions
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. . _ o . . . . .. . 0 ] :
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Simulation and prediction [days] 5.0
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Methodology Effectiveness (3)
Light-duty Vehicle Example

® Powertrain digital twin coupled with virtual driving software (driver, routes and vehicle).

® Performance and emissions for 200 completely compliant RDE cycles were predicted in 15 hours — only limited by computational power.

® 85% of RDE cycles produce higher tailpipe CO, and NOx than WLTP and RDE limits respectively; favourable RDE scenarios would be

required for compliance.

® Doesn’t only apply to emissions; can be easily converted to electric-only range and other electrified powertrain parameters.
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Conclusions and Next Steps

® Test times for covering all Euro 6d boundary conditions for a given vehicle can be reduced from 45 days to 13.1 days.
® Testing times can be reduced further when different vehicles adopt a common powertrain.

® A global picture of unfavourable testing conditions can be rapidly established without the need for expensive prototype vehicles and climate test

trips.

® Calibration robustness and hardware suitability can be rapidly assessed using a combination of physical and virtual engineering across

variations of:
— Route characteristics, ambient conditions, driving style and stochastic events amongst others

® Can be readily applied to determine real-world efficiency use cases of electrified powertrains and BEVs.
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