

Advanced Portable Emissions Measurement System for New Measurement Components

~ NH₃, N₂O & SPN₁₀ ~

18th March 2022 HORIBA, Ltd., Shun FUKAMI

1	Background	
2	N ₂ O & NH ₃	
3	SPN ₁₀	
4	Summary	

1	Background	
2	N ₂ O & NH ₃	
3	SPN ₁₀	
4	Summary	

HORIBA Automotive

HORIBA Automotive

1	Background	
2	N ₂ O & NH ₃	
3	SPN ₁₀	
4	Summary	

F

On-board NH₃/N₂O analyzer

■NH₃ & N₂O available

✓ New developed "IRLAM" technology utilizing QCL-IR
✓ RDE measurement with high accuracy & compact unit

Robustness

✓ High/Low temperature, altitude change✓ Vibration/Shock from vehicle

Flexibility

✓ Stand alone or Connect with OBS-ONE

IRLAM

What is "IRLAM"?

Newly developed gas analysis technology by HORIBA

IRLAM : InfraRed Laser Absorption Modulation

♦ High accuracy

- Infrared absorption utilizing QCL(Quantum Cascade Laser)
- ✓ Apply a latest technology to PEMS

◆ Compact

- Small gas cell (Herriot cell)
- ✓ PEMS optimized hardware design

Utility free

- Unnecessity of purge gas, liquid nitrogen (LN2)
- ✓ Unnecessity of mounting gas cylinder in vehicle

https://www.horiba.com/en en/irlam/

More info:

Specification

- Mountable with OBS-ONE
- Front access

	Spec.
Measurement range	NH3 : 0 - 1500 ppm N2O : 0 - 1000 ppm
Heating temperature	113 °C
Sampling flow rate	Approx. 3.3 L/min
Sampling rate	10 Hz
Size (w*d*h)	350mm * 470mm * 255mm
Weight	Approx. 30 kg
Operating condition	Temperature:-10 ~ 45 degCHumidity:Less than 80%RHAltitude:~ 3000m
Accuracy	+/- 1.0% of full scale or +/- 2.0% of readings whichever is smaller (+/- 0.2% of full scale: below 10% of full scale)
Noise (3σ) zero	NH3 : ≤ 0.20 ppm N2O : ≤ 0.15 ppm
Response time t ₁₀₋₉₀ (Using 6m heated tube)	NH₃ : ≤ 2.5 sec N₂O : ≤ 1.5 sec
Drift (4 hours)	+/- 1.0 % of reading

Accuracy & Response time

Accuracy

Ē

- +/- 1.0% of full scale or +/- 2.0% of readings <u>whichever is smaller</u> +/- 0.2% of full scale (at below 10% of full scale)
 - Reference:

OBS-ONE-GS:

+/- 0.3% of full scale or +/- 2.0% of readings whichever is larger

Higher accuracy at whole range

Response time (Meas. line)

 $\begin{array}{l}t_{0\text{-}10}\text{:} \ \ 2.5s\ (N_2O),\ 3.5s\ (NH_3)\\t_{10\text{-}90}\text{:} \ \ 1.5s\ (N_2O),\ \textbf{2.5s}\ (NH_3)\end{array}$

at 6m heated tube

Fast response

N₂O

N²C

O Unit-2

Unit-3
Criteri

0.2% FS

0

200

2.0% RS

400

N_{*}O Generated Conc [ppm]

0

1.0% F

1000

NH₂

O Unit-:

NH. Generated Conc [ppr

Temperature

Ē

Ambient temperature change

+/- 2.0% of readings or 0.3% of full scale whichever is larger

 Reference: OBS-ONE-GS: +/- 2.0% of full scale / 10degC

Stable at "-10 ~ 50 degC"

Zero: ≤ 2ppm, Span: ≤ 10ppm

*X-axis of graph: Temperature inside analyzer (≒ Ambient temperature + 15 degC)

Ę

Transient temperature (Low⇒Ordinary & High⇒Ordinary)

• Temperature [$-10 \Rightarrow 20 \text{ degC}$]

Span N2O: 1000ppm NH3: 1500ppm

• Temperature [$50 \Rightarrow 20 \text{ degC}$]

Span N2O: 1000ppm NH3: 1500ppm

HORIBA

Automotive

Stable in "rapid temperature changing" Error ≤ 1% RS

Vibration

Ę

■ Profile

- ✓ Sweep : 1-100 [Hz], 9.8 [m/s^2]
- ✓ Shock test : 50 [m/s^2] (≒5G)

No issue by any vibration

HORIBA Automotive

Comparison with MEXA

- Correlation test with MEXA(QL-NX) (Fuel: E10, Mode: WLTC)
- Good correlation

Ē

- \succ OBS shows similar behavior on both NH₃ and N₂O with QL
- > Same peak on both analyzer shows the good response on OBS

Very good Correlation with stationary type analyzer

50 40 ය් ¹⁰ ට 30

200 [[네 150

100 Con VH3

50

200

200

400

400

600

800

Time [s]

Time [s]

1000

1200

1400

1600

Correlation confirmation with MEXA-QL-NX (Fuel: CNG, Mode: WHTC)

Comparison report* in several conditions with stationary analyzer by JRC

Comparing OBS-ONE-XL with a FTIR-PEMS (Notation: "PEMS-LAB") confirms superiority such as measurement stability and responsiveness in low temperature environment.

Comparative test in -7 °C with AVL SESAM

Comparison of QL-NX and OBS-ONE-XL

On the road, the correlation of the N₂O concentrations measured by the two on-board systems, OBS-ONE-XL and PEMS-LAB, was good, with an $R^2 = 0.95$ obtained. In the case of the NH₃ emissions, the OBS-ONE-XL showed a more accurate performance, with sharper, better defined peaks, and less tailing effects related to NH₃ adsorption on the setup obtained

Stable measurement even in a -7 ° C environment

Automotive

© 2022 HORIBA, Ltd. All rights reserved

*Appl. Sci. 2021, 11(21), 10055; Ricardo Suarez-Bertoam, et al. Source: https://www.mdpi.com/2076-3417/11/21/10055

On-road test

Ę

- Petrol vehicle
- Displacement : 1.8L

Route • 94km / 116 min • Including climbing (Mt. Hiei)

Drift result

	Pre Test [ppm]	Post Test [ppm]	Drift [ppm]	Drift [%]
Zero	0.0	-0.1	-0.1	<u>L</u>
Span	978.8	977.2	-1.5	-0.2%

NH3

	Pre Test [ppm]	Post Test [ppm]	Drift [ppm]	Drift [%]
Zero	0.2	-0.3	-0.5	_
Span	1424.3	1420.8	-3.5	-0.2%

1	Background	
2	N ₂ O & NH ₃	
3	SPN ₁₀	
4	Summary	

Overview of OBS-ONE-SPN₁₀

Product Concept

✓ Euro7 regulation compliant: SPN10 measurement
✓ Adoption of CPC : Reliable SPN10 measurement
✓ Auto Zero check function : Improved test efficiency

Basic performance, configuration, functions, etc.

- \checkmark Single specification for SPN10 measurement
- ✓ Compatibility with conventional products (system configuration, design, operability)
- ✓ Hot Hose length : 1.5m, 2.5m, 4.0m
- ✓ Add auto Zero check function (New)

✓ High reliability against vehicle body vibration © 2022 HORIBA, Ltd. All rights reserved

Expansion of system detection lower limit (23nm \rightarrow 10nm)

Improvements on OBS-ONE-PN10

- Adjusted particle counter, re-design of piping & flow
 - 1) Expansion to 10 nm by the temperature change inside the detector (CPC)
 - 2) Particle loss reduction and high volatile particle removal efficiency by optimizing the flow / oxidation catalyst (HCS)
 - 3) Add automated Zero check *Patent pending

ORIBA

Automotive

PNC: Particle Number Counter

CPC : Condensation Particle Counter

Optics

Laser light is applied to solid particles to detect scattered light
Minimum detectable particle size depends on butanol saturation

Cooled Condenser

- ✓ Alcohol condenses into particles by cooling (30.5 to 31.5 degC) to supersaturate.
- $\checkmark\,$ Particles become nuclei and grow to about 10um

Heated Saturator

- ✓ Heat butanol (38-39 degC) to saturate
- $\checkmark\,$ Particles and alcohol vapor mixed

PMP SPN10 Draft requirements

Ē

Performance (Gasoline Direct injection turbo)

Comparison between MEXA-2110SPCS (10nm)

Direct - WLTC (Cold start)

OBS vs Reference (Lab. type SPCS): <u>-18.2%</u>

Patent pending

Auto Zero check function

Bult-in HEPA filter on primary diluter line

- Intake air from HEPA filter & exhaust from sampling prove
- Zero check after the primary diluter

Improved testing efficiency

- Easy installation & improved reliability and safety
- Time saving (No need to remove the sampling prove when checking)

1	Background	
2	N ₂ O & NH ₃	
3	SPN ₁₀	
4	Summary	

Summary NH₃, N₂O, SPN₁₀

- OBS-ONE-XL(NH₃, N₂O)
 - Supports NH₃, N₂O measurement on Real Driving Emission
 - High-precision and high-sensitivity measurement by adopting IRLAM technology
 - Responding to disturbances (environmental changes / vibration effects) on actual roads
- OBS-ONE-PN10(SPN₁₀)
 - ✓ Support SPN10 measurement by expanding the existing system detection lower limit
 - ✓ Supporting Auto Zero check function(Patent pending)

	· · · · · · · · · · · · · · · · · · ·	
Than 감사합니다	k you	Cảm ơn
	ありが	とうございました
Dziękuję		
	धन्यवाद	Grazie
Merci		谢谢
ขอบ	คุณครับ	நன்றி
Gracias		Obrigado
Σας ευχ	αριστούμε	Děkuji
Feşekkürler	شکرا	Tack ska ni ha
Danke	Больц	шое спасибо

