

Measuring Emissions from Heavy-Duty Vehicles Under Real World Conditions Using Advanced Portable Instruments and On-board Sensors

> Roberto Gioria , Tommaso Selleri, <u>Ricardo Suarez Bertoa</u> 11th Annual International PEMS Conference

> > Joint Research Centre

The Joint Research Centre at glance

In-house science service of the European Commission

Independent, evidence-based scientific and technical support for many EU policies

2760 staff*

Almost 70% are scientists and researchers Headquarters in Brussels and research facilities located in 5 Member States

Dir C: Energy, Transport & Climate

Sustainable Transport Unit: operates 8 vehicle test facilities (VELA labs), ~ 60 staff

Portable Emissions Measurement Systems on HDV

HD PEMS in EU include:

- CO₂
- NOx, CO, HC, CH₄,
- PN included with Euro VI-E

Emissions of NH_3 and N_2O

Emissions of NH_3 and N_2O are regulated in different regions:

- NH₃ (EU, South Korea)
 - QCL-IR, FTIR, LDS
- N₂O (USA, China)
 - QCL-IR, FTIR, NDIR, CG-ECD

These emissions are not verified or regulated during real-world operation

Where did it start?

Suarez-Bertoa et al., 2016, On-road measurement of NH_3 and N_2O emissions from a Euro V heavy-duty vehicle. Atmospheric Environment, 139, 167-175.

Mendoza-Villafuerte et al. 2017, NOx, NH_3 , N_2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Science of the Total Environment, 609, 546–555.

Where did it start?

Euro V

Euro VI

Portable measurement systems

	PEMSLAB	OBS-ONE-XL	LAS-NH ₃ /N ₂ O
Measuring principle	FTIR*	QCL	LAS
Compounds measured	N ₂ O, NH _{3,} CO, NOx,	N ₂ O, NH ₃	N ₂ O, NH ₃
Cell temperature	180 °C	113 °C	190 °C
Sampling rate	1 Hz	10 Hz	10 Hz

*Spectral resolution 8 cm⁻¹

More information at: https://doi.org/10.3390/app112110055 and <

Emissions of NH_3 and N_2O - HD CNG

Tested vehicle

Fuel	CNG
Category	M3 Class I (interurban bus)
ATS	TWC
Standard	Euro VI-D
ICE size (cm ³)	8710
Production	2019

Instruments

Lab-grade:

- AVL-AMA
- AVL-SESAM (FTIR)
- MEXA-ONE-QL-NX (QCL)

Tests performed

- WHVC cold + hot @ 35°C
- WHVC cold + hot @ 23°C
- WHVC cold + hot @ 0°C
- WHVC cold + hot @ -7°C
- On-Road tests

Portable:

- HORIBA OBS-ONE-XL (pQCL)
- PEMSLAB (pFTIR)

N₂O emissions measurements

Lab-FTIR pQCL pFTIR

NH₃ emissions measurements

NH₃ SESAM (ppm)

1200 1400

N₂O emissions measurements on-road

pQCL pFTIR

Emissions from a HD Diesel Demonstrator

Lab-grade:

•

•

AVL-AMA

Tested vehicle

Fuel	Diesel
Category	N3
Standard	Euro VI-C modified
ICE size (cm ³)	12 800

Instruments

AVL-SESAM (FTIR)

MEXA-ONE-QL-NX

HORIBA OBS-ONE-XL

AIP LAS-N₂O/NH₃

Tests performed

Test	T (°C)
WHVC COLD & HOT	-7, 23, 35
RWT COLD	-7, 23, 35
Urban cycle COLD	-7, 23
JRC drive COLD	-7
"worst case" cycle COLD	-7

17 Different tests

Sensors:

Portable:

NOx and NH₃

N₂O emissions measurements

pQCL (IRLAM) vs Lab-QCL and Lab-FTIR

LAS vs Lab-QCL and Lab-FTIR

NOx emissions using on-vehicle sensors

- Commercial sensors present in the vehicle
- Emissions calculated using laboratory exhaust flow
- Sensors slightly overestimate emissions:
 - 15% short tests and 50% for 100th %
 - Larger at 90th % possibly due to the very low concentrations of the emissions.

Closing remarks

• There are portable measurement systems for NH₃ and N₂O that provide comparable results to laboratory grade instruments

• The specifications of the instruments needed for some applications must be carefully considered

 NOx measurements using commercially available on-vehicle sensors are very promising

Acknowledgments

JRC

- A. Melas
- B. Giechaskiel
- F. Forloni
- J. Franzetti
- A. Bonamin
- A. Perujo

HORIBA

- V. Lilova
- Y. Onishi
- AECC
- P. Mendoza
- J. Demuynck
- D. Bosteels

FEV

AIP

•

•

B. Grob

M. Steffen

- T. Wilkes
- O. Simons
- P. Recker

Commission

Thank you

© European Union 2022

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

