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Objectives for Low NOX Real World Duty Cycle Testing

1. Characterize Performance of the Low NOX Test Engine-Aftertreatment System on Real-
World Duty Cycles
– Does Regulatory Cycle Performance Translate to field cycles ?

2. Characterize PEMS Measurement Capability at Low NOX Levels Using Representative 
Emission Signatures
– What is the Incremental Measurement Variability (if any) with PEMS as compared to Lab 

Reference Measurements ?

3. Examine Sensor-Based Measurements at Low NOX Levels Using Representative Emission 
Signatures

Experimental Approach – Replay Field Duty Cycles on Stage 3RW Low NOX Engine in Lab with 
PEMS and Sensors
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EPA Stage 3RW Low NOX Demonstration Engine
2017 Cummins X15 Engine

Advanced Low NOX Aftertreatment 
(Dual SCR-Dual Dosing)

Additional Engine Hardware 
(Cylinder Deactivation)

Targets:  
• FTP/RMC NOX 0.02 g/hp-hr at 435k 

miles
• Lowest feasible LLC and in-use NOX
• No adverse GHG impact

Eaton CDA Hardware

SAE Paper
2021-01-0589
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EPA Updates
• Change zCSF to DOC+DPF
• Improved downstream DEF mixing



Latest Results on EPA Stage 3RW Platform After 600,000 miles Aging
(1,000,000 km) – Regulatory Cycle Results

 DAAAC1 Aging (thermal + chemical) ~13,800 equivalent hours

 435,000-mile results compared to 0.020 (FTP-RMC) / 0.050 (LLC) standard –

At standard but no margin (LLC below standard with margin)

 600,000-mile results compared to 0.035 (FTP-RMC) / 0.090 (LLC) standard –

Below standard but is margin enough ? (LLC yes)

 Note values do not include UAF2 (0.002 FTP-RMC, 0.005 LLC)

4
1 DAAAC = Diesel Accelerated Aftertreatment Aging Cycles
2 UAF = infrequent Regeneration Upward Adjustment Factor

Updates from original Stage 3 – change from 
zone-coated CSF to DOC+DPF and 
downstream mixing improvements
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Cycle Development Process Example – Southern NTE Route
 WVU drove trucks on real-

world routes
 Recorded vehicle data used 

along with engine torque curve 
information to generate 
Normalized engine-dyno replay 
cycle for Lab use
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Cycles run for a full shift as they were run in the field, including 
cold-start and engine shutdowns where they happened 



Temperature and Data on Example Field Cycle (EU-ISC)
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 Cold-start and low load 
primary control is using LO-
SCR

 High-load LO-SCR efficiency 
reduced by strategy and 
dsSCR handles most of load

– enable passive soot 
oxidation

 Tailpipe behavior is barely 
visible in black at bottom
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3-bin Moving Average Window (3B-MAW) – Short Description

 All operation is used (including cold-start starting 2027)
 300-second Moving Average Window (MAW) – increments 1 second at a time
 NOX and CO2 emissions from each window sorted into bins by normalized CO2 (load 

surrogate)
 Bin 1 (Idle) emissions calculated as average mass rate for the entire bin
 Bin 2 / 3 (Low / Med-High) emissions calculate as sum-over-sum (NOX/CO2) for the bin

– multiplied by FTP BSCO2 to translate emissions to BSNOX in g/hp-hr

7

Binning of windows by load (normalized CO2)

Bin 1
Bin 2
Bin 3

Emission Calculations - summed totals for each bin
(Bin 2/3 use sum-over-sum NOX / CO2)

Bin 1

Bin 2/3



Example of 3B-MAW and Emissions – EU ISC Route (Stage3RW-435Kmi System)

 Large margins for Bin 1/ 2
 Bin 3 is between 2027 and 2030 thresholds
 Main Bin 3 emissions occur at transition 

from Urban to Rural segment
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2027 CARB 2030 CARB Stage 3 RW Result Series8 Series4 Series2

g/hp-hr g/hr % Number
Idle (< 6%) 10 7.5 0.035 0.4 13.6% 3180
Low (6%-20%) 0.10 0.075 0.025 1.5 52.6% 12300
Mid-High (> 20%) 0.04 0.03 0.033 5.1 33.8% 7906
Total Cycle 0.030 23386
Total Sum-over-Sum 0.031
Cycle CO2 % Max 16.3%

Bin 2027
Result

2030
Windows

Urban Rural Motorway Urban Rural

1-hr Idle

Bin 2 (red)
Bin 3 (green)

Bin 1 (blue)



Real World Duty Cycle Results on EPA Stage 3RW Platform
435,000 miles Aging
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 Regulatory Cycle performance (with LLC) does 
translate to real-world performance for this system

 Bin 1 / 2 – below 2030 thresholds with margin
 Bin 3 – some duty cycles in but some were at or above 

2030 thresholds, below 2027 but little margin

3-bin MAW* In-Use Method Results

Real-world routes run by WVU on trucks, translated to cycles we could 
run on engine-dyno using Stage 3RW system (stock system performed 
similarly to field data…we are duplicating the field duty cycle accurately)

* 3-bin MAW is the new in-use testing protocol (EPA/CARB), considers all operation 
including cold-start, 5-min averaging window results sorted into three “load” bins

(SNTE)
Tractor with challenging 
downhill runs

Warehouse transport and local 
deliveries (including shut-downs)
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PEMS vs Lab Reference – NOX Concentration

 All concentrations are Wet and Drift Corrected
 Overall PEMS NOX behavior very similar to Lab Reference over 6.5 hours
 Reference is average of 3 separate Lab emission benches
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Importance of Periodic Zero or Zero-Span and Drift Correction

 In this case, drift was observed over test day of ~ 1.7ppm
 Periodic zero observations allowed appropriate drift 

correction
 Significant reduction in PEMS delta versus Lab Reference
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PEMS Lab

DC not DC Reference

Bin 1, g/hr 0.9 1.2 0.8

Bin 2, g/hp-hr 0.049 0.062 0.040

Bin 3, g/hp-hr 0.035 0.042 0.034

From Initial From Previous
0.58 0.58
1.03 0.45
1.24 0.20
1.36 0.12
1.60 0.24
1.74 0.14

NOX Zero Drift, ppm
SNTE Full Cycle



PEMS Exhaust Flow Comparisons – SNTE Example

 Overall similar response between Lab and PEMS flow 
meters

 Span errors up to 5% observed
 Intermittent issues observed at low flow rates near idle
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Selected 3B-MAW Cycle Results – PEMS versus Lab
 Differences between PEMS and Lab are 

observed
– Note that multiple Lab Reference 

benches were also used
– PEMS differences were larger than 

difference among Lab benches

 No consistent trend in PEMS versus 
Lab comparison across all duty cycles 
or at different emission levels

– No clear bias or offset was observed
– This was true both across different 

PEMS and from PEMS to Lab
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Idle (< 6%) 0.7 0.9 0.8 0.3
Low (6%-20%) 0.041 0.049 0.043 0.037

Mid-High (> 20%) 0.030 0.035 0.034 0.031

Bin PEMS CDil Ref PEMS A PEMS BLab

Idle (< 6%) 0.3 0.3 0.3 0.4
Low (6%-20%) 0.015 0.018 0.020 0.019

Mid-High (> 20%) 0.023 0.020 0.029 0.029

Bin PEMS CDil Ref PEMS A PEMS BLab

Idle (< 6%) 5.2 4.3 5.5 4.9
Low (6%-20%) 0.183 0.163 0.162 0.175

Mid-High (> 20%) 0.047 0.051 0.048 0.049

PEMS CDil Ref PEMS A PEMS BBin Lab

SNTE Cycle – Detuned Controls at Higher Emissions 
(0.04 g/hp-hr FTP, 0.1 g/hp-hr LLC)

Drayage Cycle – Stage 3RW, 435k

SNTE Cycle – Stage 3RW, 435k



Individual NOX Sensor Comparisons versus Lab Reference
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 Data is from same SNTE field cycle as PEMS 
examples

 Controller is tailpipe NOX sensor from test article 
(~1200 hours)

 Sensor X/Y/Z examples from different suppliers
– Not Aged Sensors

 Lab Reference is same as for PEMS comparisons
 At this scale data appears to be very “noisy” 

compared to Lab
– Larger features are still captured

 Aged Controller sensor does appear to show a 
negative offset compared to Lab and other sensors

– This is just one sample…

Impact on 3B-MAW (nic Aging or Batch variability)

SNTE Full Cycle



Filtered Sensor Data Comparisons and Impact on Results
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 High Frequency sensor behavior 
makes it difficult to see where 
sensor is overall compared to Lab

 Added 10-sec moving average filter 
to sensor data

 Filtered data shows offsets more 
clearly

 No overall pattern
– positive and negative offsets 

are observed compared to Lab 
data

 Could these lower frequency 
errors be addressed by zero “drift” 
correction ?

Sensor X

Sensor Y

Sensor Z

SNTE Full Cycle



NOX Sensor Behavior versus Engine Operation
 A variety of different behaviors are 

seen for different kinds of engine 
operation
 Rapid changes in speed and/or torque 

result in significant “noise”
 Sensor behavior impacted by rapid 

rates of change in load
– this event show a large but 

momentary load drop (but not quite a 
fuel cut event)

 Large swings in O2 and/or H2O appear 
to cause disturbance in NOX sensor 
reading

– this can cause positive or negative 
errors
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Engine ECM Exhaust Flow – CAN J1939 versus Lab

 ECM Exhaust Flow – sum or recorded air flow and fuel flow 
recorded from J1939 broadcast

– EngInletAirMassFlowRate (kg/hr)

– EngFuelRate (L/hr converted to kg/hr using 0.851 kg/L)
 Compared to Lab Reference

– Measure Intake Air Flow (LFE) + 1065 Chemical Balance
 Standard Error ~ 2-3%, Span Errors < 5%
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CO2 from Engine ECM Fuel Rate – J1939 versus Lab

 ECM Fuel Rate (J1939 EngFuelRate)
 CO2 can be calculated from Fuel Rate 

– There will be some added error due to varying fuel carbon fraction – small for 
diesel

– Likely good enough for purposes of binning 
 Flow rate SEE within 3% and slope within 5%
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What Do These Results Indicate About In-Use Measurement ?
 PEMS

– Overall results look relatively good – no significant biases present with automated zero or zero-span checks 
active and drift correction applied

– Spread does appear wider than Lab Reference, but more analysis is needed to say how much
• SwRI is working on a model of PEMS measurement error to allow analysis via Monte Carlo simulation approach

– Note these are current generation PEMS, significantly better than previous evaluations
– These results do not consider environmental impacts on PEMS

• Are current generation PEMS better than previous equipment ?

 NOX Sensors
– Work yet to be done for “compliance level” measurements at Low NOX levels

• Can be used to identify significant problems, failures, gross emitters…

– There may be potential for improvement in compensating for sensor drift and/or engine transients
– Impact of sensor aging and batch variability must also be accounted for

 Other Engine Sensor Measurements to support 3B-MAW (Exhaust Flow, CO2 from Fuel Rate)
– Relatively close, maybe good enough to support compliance measurements if NOX can be improved
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