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Objectives for Low NO, Real World Duty Cycle Testing

|.  Characterize Performance of the Low NO, Test Engine-Aftertreatment System on Real-
World Duty Cycles

— Does Regulatory Cycle Performance Translate to field cycles ?

2. Characterize PEMS Measurement Capability at Low NOy Levels Using Representative
Emission Signatures

—  What is the Incremental Measurement Variability (if any) with PEMS as compared to Lab
Reference Measurements ?

3. Examine Sensor-Based Measurements at Low NOy Levels Using Representative Emission
Signatures

Experimental Approach — Replay Field Duty Cycles on Stage 3RW Low NO Engine in Lab with
PEMS and Sensors
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EPA Stage 3RW Low NO, Demonstration Engine
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Latest Results on EPA Stage 3RW Platform After 600,000 miles Aging
(1,000,000 km) - Regulatory Cycle Results
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1DAAAC = Diesel Accelerated Aftertreatment Aging Cycles

DAAAC! Aging (thermal + chemical) ~13,800 equivalent hours

435,000-mile results compared to 0.020 (FTP-RMC) / 0.050 (LLC) standard —

At standard but no margin (LLC below standard with margin)

600,000-mile results compared to 0.035 (FTP-RMC) / 0.090 (LLC) standard —

Below standard but is margin enough ? (LLC yes)

Note values do not include UAF? (0.002 FTP-RMC, 0.005 LLC)
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s Updates from original Stage 3 — change from
zone-coated CSF to DOC+DPF and
downstream mixing improvements
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Cycle Development Process Example — Southern NTE Route

w

r ; ‘
%”ﬁwﬁ;ﬂ,;f - e,

Field Route

1000 [

Engine Speed [rpm]

00000

il

80

70 L

60 |

Vehicle Speed [mph]
- N w S
=) S S S
T

o

RecgrdedepeeH /Load
Data from Drive

Actual Vehlcle Speed

from Truck on Route

h

» WVU drove trucks on real-
world routes

" Recorded vehicle data used
along with engine torque curve
information to generate
Normalized engine-dyno replay
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v
=)
Normalized Torque

9000 12000 15000 18000 21000

Cycles run for a full shift as they were run in the field, including

cold-start and engine shutdowns where they happened
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Temperature [deg C]

NOx [g/h]

Temperature and Data on Example Field Cycle (EU-ISC)
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» Cold-start and low load

primary control is using LO-
SCR

" High-load LO-SCR efficiency
reduced by strategy and
dsSCR handles most of load

— enable passive soot
oxidation

* Tailpipe behavior is barely
visible in black at bottom
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3-bin Moving Average Window (3B-MAW) - Short Description

Binning of windows by load (normalized CO,) Emission Calculations - summed totals for each bin
(Shey 2002 (0) (Bin 2/3 use sum-over-sum NO, / CO,)

FCLx (Prn.a.xxﬁ)

window normalized average CO2 rate =

Engine Normalized Average _ Yg=1MpyoxXAt _ 3,600 sec

Bin Type Window CO2 Rate Binl  €sos Nox,idle = nAc T
Bin 1 Idle Diesel Cycle CO2nomalized <6%
n .
. . . _ Mo XAt
B|n 2 Low Diesel Cycle 6% < CO2normalized <20% Bln 2/3 eSOS a.b — Ek_l < ecoz FTP FCL

?;;:1 Moz XAt

Bin 3 Med/High Diesel Cycle 20% < CO2nomalized

All Operation | Otto-Cycle na

= All operation is used (including cold-start starting 2027)
300-second Moving Average Window (MAW) — increments | second at a time

NO, and CO, emissions from each window sorted into bins by normalized CO, (load
surrogate)

Bin | (ldle) emissions calculated as average mass rate for the entire bin
Bin 2 / 3 (Low / Med-High) emissions calculate as sum-over-sum (NO,/CQO,) for the bin
— multiplied by FTP BSCO, to translate emissions to BSNO, in g/hp-hr
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Example of 3B-MAW and Emissions — EU ISC Route (Stage3RW-435Kmi System)
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Real World Duty Cycle Results on EPA Stage 3RW Platform

435,000 miles Aging
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Inside port or drayage yard operation =>
extended idle operation

Real-world routes run by WVU on trucks, translated to cycles we could
run on engine-dyno using Stage 3RW system (stock system performed
similarly to field data...we are duplicating the field duty cycle accurately)

S

3-bin MAW" In-Use Method Results
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= Regulatory Cycle performance (with LLC) does
translate to real-world performance for this system

" Bin | /2 — below 2030 thresholds with margin

0.02

0.00

Bin 2/3 NOy, g/hp-hr

" Bin 3 — some duty cycles in but some were at or above

2030 thresholds, below 2027 but little margin

* 3-bin MAW is the new in-use testing protocol (EPA/CARB), considers all operation

including cold-start, 5-min averaging window results sorted into three “load” bins
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PEMS vs Lab Reference - NO, Concentration

—PEMS A PEMS B PEMS C —Reference

SNTE Full Cycle —PEMS 1 PEMS 2 PEMS 3 —Reference
1000

100 900 Cold-Start Peak

90 800
700

600
500
400

N N
o O
Raw Wet NOx, ppm

300
200

H
o

100

Raw Wet NOx, ppm
v
<)

W
o
[S)

100 150 200 250

N
o

=
o

o

0 3000 6000 15000 \QQO 21000

Time, sec

Individual drops to zero are periodic zero or zero-

. . span events on a given PEMS
= All concentrations are Wet and Drift Corrected

= Overall PEMS NOy behavior very similar to Lab Reference over 6.5 hours
= Reference is average of 3 separate Lab emission benches
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Importance of Periodic Zero or Zero-Span and Drift Correction

PEMS NO,, Drift Correction with Periodic Zero Checks NO, Zero Drift, ppm
SNTE Full CVCIe —Lab Reference  —PEMS Drift Corrected —PEMS Uncorrected From Initial | From Previous

0.58 0.58

20 103 0.45
1.24 0.20
1.36 0.12

15 1.60 0.24
1.74 0.14

10

NOy, ppm

0 22000

-10 - U L L 1

" In this case, drift was observed over test day of ~ |.7ppm m“
Results

= Periodic zero observations allowed appropriate drift e I I
correction Bin 1, g/hr 0.9 1.2 0.8
. g . . Bin 2, g/hp-hr  0.049 0.062 0.040
= Significant reduction in PEMS delta versus Lab Reference
Bin3,g/hp-hr  0.035  0.042 0.034
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Exhaust Flow, kg/hr

PEMS Exhaust Flow Comparisons - SNTE Exa
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Selected 3B-MAW Cycle Results - PEMS versus Lab

SNTE Cycle — Stage 3RW, 435k

= Differences between PEMS and Lab are
Bin Lab | PEMSA | PEMSB | PEMSC observed
Idle (< 6%) 0.7 0.9 0.8 0.3 ,
Low (6%-20%) | 0.041 | 0049 | 0.043 | 0.037 — Note that multiple Lab Reference
Mid-High (>20%) | 0.030 | 0.035 | 0.034 | 0.031 benches were also used
Drayage Cycle — Stage 3RW, 435k — PEMS differences were larger than
difference among Lab benches
Bin Lab | PEMSA | PEMSB | PEMSC
Idle (< 6%) 0.3 0.3 0.3 0.4 * No consistent trend in PEMS versus
Low (6%-20%) 0.015 | 0.018 | 0.020 | 0.019 .
Mid-High (>20%) | 0.023 | 0.020 | 0.029 | 0.029 Lab comparison across all duty cycles
SNTE Cycle — Detuned Controls at Higher Emissions or at different emission levels
(0.04 g/hp-hr FTP, 0.1 g/hp-hr LLC) — No clear bias or offset was observed
8in Lab | Pemsa | pemse | PEms ¢ — This was true both across different
Idle (< 6%) 5.2 4.3 5.5 4.9 PEMS and from PEMS to Lab
Low (6%-20%) 0.183 | 0.163 | 0.162 | 0.175
Mid-High (>20%) | 0.047 | 0.051 | 0.048 | 0.049
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Raw Wet NOx, ppm Raw Wet NOx, ppm

Raw Wet NOx, ppm

Individual NO,, Sensor Comparisons versus Lab Reference
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= Data is from same SNTE field cycle as PEMS
examples

= Controller is tailpipe NOy sensor from test article
(~1200 hours)

= Sensor X/Y/Z examples from different suppliers
— NotAged Sensors
= Lab Reference is same as for PEMS comparisons

= At this scale data appears to be very “noisy”
compared to Lab

— Larger features are still captured

» Aged Controller sensor does appear to show a
negative offset compared to Lab and other sensors

— This is just one sample...

Impact on 3B-MAW (nic Aging or Batch variability)

2030
R
Threshold
Bin 1, g/hr 7.5 0.7 0.9 0.3 1.3
Bin 2, g/hp-hr 0.075 0.040 0.035 0.028 0.068
Bin 3, g/hp-hr 0.03 0.033 0.034 0.032 0.072
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Filtered Sensor Data Comparisons and Impact on Results
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High Frequency sensor behavior
makes it difficult to see where
sensor is overall compared to Lab

Added |0-sec moving average filter
to sensor data

Filtered data shows offsets more
clearly

No overall pattern

— positive and negative offsets
are observed compared to Lab
data

Could these lower frequency
errors be addressed by zero “drift”
correction !

POWERTRAIN ENGINEERING

BSOUTHWEST RESEARCH INSTITUTE

. 15
swri.org



NO, Sensor Behavior versus Engine Operation
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= A variety of different behaviors are
seen for different kinds of engine
operation

" Rapid changes in speed and/or torque
result in significant “noise”

* Sensor behavior impacted by rapid
rates of change in load
— this event show a large but
momentary load drop (but not quite a
fuel cut event)

" Large swings in O, and/or H,O appear
to cause disturbance in NOy sensor
reading

— this can cause positive or negative
errors
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Engine ECM Exhaust Flow — CAN J1939 versus Lab

Engine 1 Engine 2
1600 - ) 1800 . Data from CARB Stage 2
= 1000 : Low NO, Program

1400 -

y=0.9972x+4.265

2 1200 R=0.9709 % §1400 y=0.9675x+1.7289
5 % 1200 R?=0.984
5 100 Multiple Production 2018
T 800 g .
3 3 800 Heavy-Duty Engines
£ e00 S 600 -
é 200 | 0.997 g,, w00 | - 1 0.967
w Intercept 0.3% %max w Intercept 0.1% %max
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RSQ 0971 o | . éRSQ o 0.984 .
’ ﬁ zﬁn 460 sﬁn 800 1n‘nn 1z‘nn 14|nn 1slnn 0 200 400 600 BOO 1000 1200 1400 1600 1800
Lab Measured Exhaust Flow Lab Measured Exhaust Flow
Engine 3 :
= ECM Exhaust Flow — sum or recorded air flow and fuel flow
. recorded from J1939 broadcast

y=0.9556x+9.5347

1200 ’.f"t.‘.""&.‘? .
R — EnglnletAirMassFlowRate (kg/hr)

R =0.9837

3 o — EngFuelRate (L/hr converted to kg/hr using 0.851 kg/L)
§ e * Compared to Lab Reference
& 0 Intercept [;.7% Y%max

se 2.4% %max — Measure Intake Air Flow (LFE) + 1065 Chemical Balance

RSQ 0.984
"o w m e m ww ue we we W Standard Error ~ 2-3%, Span Errors < 5%
Lab Measured ExhaustFlow
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CO, from Engine ECM Fuel Rate - J1939 versus Lab

O Fuel Rate / CO2 Measurement Ratio
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= ECM Fuel Rate (J1939 EngFuelRate)
" CO, can be calculated from Fuel Rate

Data from CARB Stage 2
Low NO, Program

— There will be some added error due to varying fuel carbon fraction — small for

diesel

— Likely good enough for purposes of binning

" Flow rate SEE within 3% and slope within 5%

Multiple Production 2018
Heavy-Duty Engines
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What Do These Results Indicate About In-Use Measurement?
= PEMS

— Overall results look relatively good — no significant biases present with automated zero or zero-span checks
active and drift correction applied

— Spread does appear wider than Lab Reference, but more analysis is needed to say how much
* SwRI is working on a model of PEMS measurement error to allow analysis via Monte Carlo simulation approach

— Note these are current generation PEMS; significantly better than previous evaluations

— These results do not consider environmental impacts on PEMS

* Are current generation PEMS better than previous equipment ?
= NOy Sensors

— Work yet to be done for “compliance level” measurements at Low NO, levels

* Can be used to identify significant problems, failures, gross emitters...
— There may be potential for improvement in compensating for sensor drift and/or engine transients
— Impact of sensor aging and batch variability must also be accounted for

= Other Engine Sensor Measurements to support 3B-MAW (Exhaust Flow, CO, from Fuel Rate)

— Relatively close, maybe good enough to support compliance measurements if NO, can be improved
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