

Role of Sensors and Data in an Integrated Transportation and One Health Approach

H. Christopher Frey, Ph.D. Deputy Assistant Administrator for Science Policy Office of Research and Development

11th Annual International PEMS Conference Riverside, CA

March 17, 2022

- Over-Arching Contexts
- Office of Research and Development
- ORD Research on Source to Impact Continuum
- High Resolution Data
- Opportunities

One Health

Thompson, 2013, Int J Parasitol. 43(12):1079-1088 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126848/

Office of Research and Development

One Health & Environmental Contaminants

Barcelona Institute of Global Health https://www.isglobal.org/en/-/one-health-una-sola-salud-

EPA's Mission

To protect human health and the environment.

One Health Actions by EPA

Laws

- <u>Clean Air Act</u> <u>RCRA</u>
- <u>Clean Water Act</u>
 <u>Superfund</u>
- <u>TSCA</u>
 - A
- ESA

FIFRA

(CERCLA)

More Law Summaries

Regulated Topics

- Asbestos
- Certifications (608, etc.)
- Mold
- Drinking Water
- Lead
- Waste
- <u>Per- and Polyfluoroalkyl Substances</u>
 (PFAS)

Find more topics

https://www.epa.gov/laws-regulations

Regulated Sectors

- <u>Agriculture</u> <u>Electric Utilities</u>
- Automotive Oil & Gas Extraction
- <u>Construction</u>
 <u>Transportation</u>

Find more sectors

6

One Health and Transportation

- Transportation systems interact not just with humans, but also modify the natural environment.
- Holistic approaches to improving community health and wellbeing via transportation improvements can address One Health.
- The work that the PEMS community does is an important contributor to characterizing the spatial and temporal distribution of chemical stressors.

Positive/Neutral/Negative Influences of the Total Environment (Built, Natural, Social)

Adapted from Tulve, N. S., Ruiz, J. D. C., Lichtveld, K., Darney, S. P., & Quackenboss, J. J. (2016). Development of a Conceptual Framework Depicting a Child's Total (Built, Natural, Social) Environment in Order to Optimize Health and Well-Being. Journal of Environment and Health Science, 2 (2), 1-8.

EPA's Office of Research and Development

- ORD conducts research, providing the foundation for credible decision making to protect human health and the environment
- ORD's Mission: To provide the best available environmental science and technology to inform and support human health and environmental decision making at the federal, state, tribal, and local levels, addressing critical environmental challenges and anticipating future needs through leading edge research.

Set EPA

ORD's Research Programs

ORD's work is focused into six research programs

Air, Climate, & Energy

Chemical Safety for Sustainability

Homeland Security

Health & Environmental Risk Assessment

Safe & Sustainable Water Resources

Sustainable & Healthy Communities

ORD Research Planning

ORD is in the middle of a long-term research planning cycle, developing Strategic Research Action Plans (StRAPs) for FY23-FY26.

NO.

Safe and Sustainable Water Resources Chemical Safety for Sustainability

Homeland Security

Safe &

Sustainable

Water Resources

Sustainable & Healthy Communities

ORD Cross-Cutting Research Priorities

Environmental Justice

Cumulative Impacts

Climate Change

Community Resiliency

Children's Environmental Health

Contaminants of Immediate and Emerging Concern

Environmental Justice Considerations (examples)

What common questions do community members have?

Should I be concerned about air pollution in my community?

How do air pollution concentrations change from place to place in my community?

What are the causes of air pollution in my community?

Supplementing data collected in national air monitoring networks, a variety of monitoring strategies exist to provide answers to these common questions. Models can provide important complementary information. This presentation is primarily about monitoring.

Measurement considerations for these questions

Should I be concerned about air pollution in my community?

Measure air pollutant types of concern using methods that are <u>accurate enough</u> to compare against benchmark values

How do air pollution concentrations change from place to place in my community?

Measurements should be precise enough to determine changes in concentrations and support multi-location measurement

What are the causes of air pollution in my community?

Measurement <u>strategy is needed</u>, which could involve complementary modeling and combining ancillary data to explore local and distributed source contributions to air pollution concentrations

Common measurement research strategies to isolate localscale impacts

EPA

Note: These two strategies can be used in combination

Community-Focused Research Needs

- Environmental Justice
- Community stakeholder perspective: science-informed action to solve problems
- EPA's National Environmental Justice Advisory Committee (NEJAC) (2004):
 - Promote a paradigm shift to community-based approaches, particularly community-based participatory research and intervention
 - Develop and implement efficient screening and targeting methods/tools to identify communities needing immediate intervention

Decision-Makers

Individuals Communities Companies Local Government (City, County) State Government Federal Government

SEPA

Health Impact Assessment (HIA)

is one method of accounting for combinations of chemical and non-chemical stressors in a decision-focused manner.

HIA's rely on extensive collaboration between community members, scientists, and government

Courtesy of Tim Barzyk, ORD

Impacts

Air/water/soil quality Community/household economics Education Exposure to hazards Healthcare access/insurance Housing Infectious disease Land use Traffic Safety Mental health Access to goods and services Noise pollution Nutrition Parks and recreation Physical activity Water Resources Safety and security Social capital

Soil quality

Health Effects

attention deficit disorder	 endocrine disorders 	 malnutrition
(ADD)/attention deficit	 eye/nose/throat/lung irritation 	 mental health
hyperactivity disorder (ADHD)	- fatigue	 metabolic disorder/disease
alcoholism/substance abuse	 food-borne illness 	 morbidity
allergies	 gallbladder disease 	 mortality/death/fatality
anemia	 genotoxicity 	 musculoskeletal/bone & joint
anxiety	- gynecological/reproductive health	 myocardial infarction
arthritis	- headaches	- nausea
asthma	 hearing loss/impairment 	 neurological health
behavioral health/development	 heart attack 	- nutrition
birth defects	 heart disease 	 obesity/weight
bronchitis	 heat/cold related illnesses 	- osteoporosis
cancer	 hypertension/high blood pressure 	 overall/general health
carbon monoxide poisoning	 immune system/function 	 physical health
cardiovascular/circulatory health	- infection	 physiological health
central nervous system function	 infectious disease 	- pneumonia
childhood growth/development	 inflammation/inflammatory 	 psychological health
cholesterol	response	- rape
chronic disease	- injury	 respiratory health
chronic obstructive pulmonary	 irregular heart beat 	 sexually transmitted disease
disease (COPD)	 kidney disease/disorder 	 sick building syndrome
cognitive function	 lead poisoning 	- sleep apnea
communicable disease	 learning disabilities/reduced 	 sleep disturbance
depression	learning	- stress
diabetes	 life expectancy 	- stroke
diarrhea	 liver disease/health 	- suicide
disability	 low birth weight 	- ulcers
dyslipidemia	 lung disease/health 	 vector borne illness
emphysema	_	 water borne illness/water toxics
		expositre

Rhodus et al. 2012. A Review of Health Impact Assessments in the U.S.: Current State-of-Science. Best Practices, and Areas for Improvement.

Set EPA

Cumulative Impacts

- EPA-regulated pollutants are one of many issues of concern for communities
- While EPA cannot address all health risks in communities, understanding these interactions is important for decision-making

Courtesy of Tim Barzyk, ORD

Cumulative Impacts

ORD will integrate efforts across research programs to improve understanding of cumulative impacts and develop and apply the necessary models, methods, and tools to conduct real-world assessments that result in both adverse and beneficial health and environmental effects.

- Addressing the cumulative impacts of exposure to multiple chemical and non-chemical stressors is necessary with the best available science.
- Internal and external partners can make informed, scientifically credible decisions to protect and promote individual, community, and environmental health.

Cumulative Impacts White Paper: Recommendations for ORD Research

Cumulative Impacts

Summary of Recommendations

Establish the Decision Context and Stakeholder Engagement

Identify partners, policies, decisions and tools; engage partners to translate research into action; and establish trust and true partnerships with communities.

Address Scientific Considerations for Meeting Partner Needs

Develop fit-for-purpose approaches to characterize exposures; evaluate health disparities and well-being impacts; identify intervention points; and evaluate impacts of policies and interventions.

Empower Local Decisions and Actions

Support fit-for-purpose use of community-generated data; provide access to transparent data; offer training and technical support on EPA methods, guidance, and tools for cumulative impact assessment.

Set EPA

Summary of Recommendations

Support Science Translation and Delivery

Deliver solutions that improve community health and well-being and translate approaches and results for broader contexts.

EXTERNAL REVIEW DRAFT

Cumulative Impacts Recommendations for ORD Research

United States Environmental Protection Agency Office of Research and Development January 2022

<u>View the White Paper</u>

Provide Research Mgmt Support for Cumulative Impact Assessment

Integrate cumulative impact research into ORD's portfolio; address technological, workforce and culture issues; build partnerships to advance cumulative impact research and policy.

€PA

Science Advisory Board Consultation

ORD collaborated with program and regional offices on a 'OneEPA' joint SAB Consultation on cumulative impact assessment.

Consultation occurred on March 2&7, 2022

Consultation sought advice on the following:

- 1. Understanding and accounting for uncertainties in the use of cumulative impact assessment for a range of both nearand long-term Agency decision-making contexts, including regulatory, permitting, land-use decisions, and more.
- 2. Contents and recommendations in the Cumulative Impacts White Paper, including research directions to develop the science to support these cumulative impact assessments.

Transportation-Related ORD Research

Emissions Characterization

- Chassis Dynamometers
- On-board Measurements (PEMS)
- Analytical Laboratories

Air Quality and Exposure Assessments

- Mobile Monitoring
- Fixed-site Sampling
- Portable Sensors
- Wind Tunnel
- CFD Modeling

Health Effects

- Epidemiological
- Toxicological

Emissions Examples

Motor vehicle emissions while operating on alternative and renewable fuels

- Ethanol-blends with gasoline
- Biodiesel

Current and new technology vehicle emissions

- Understand deterioration and future benefits from new technologies
- Tier 2 and 3 Light-Duty and GDI vehicles
- 2010 compliant Heavy-Duty trucks

Effects of cold temperature and cold start conditions

Brake and tire wear (including nano-materials)

Influence of driving activity on emission changes

Projects in US and internationally

On-Board Measurements

Courtesy of Rich Baldauf

Emissions can greatly increase when driving conditions fall outside our federal test methods, notably at high speed/acceleration

Ambient Temperature Effects

EPA's MOVES emissions model now accounts for ambient temperature effects on PM emissions

Courtesy of Rich Baldauf

Lab and field studies show that emissions increase with decreasing temperature for running and start (used in MOVES)

Office of Research and Development

Set EPA

Brake and Tire Wear

- Focus on PM emissions brake and tire include coarse, fine and ultrafine particles
- Especially Nano-materials used in manufacturing

Deshmukh, Bang, Kumbhar, and Baldauf, 2010, Health Effects Institute Annual Conference

Office of Research and Development

Set EPA

Air Quality and Exposure

Field measurements of traffic, meteorology and air quality

- Fixed and
- Mobile monitoring that include
- Reference and lower cost sensors

Wind tunnel assessments

- General road configurations
- Simulations of field sites

Modeling assessments

- Computational Fluid Dynamics (CFD)
- Research dispersion model (R-LINE)
- EPA regulatory emissions (MOVES) and dispersion (AERMOD) models
- EPA mapping software (*e.g.*, EnviroAtlas)

Mobile Air Quality Measurements

Mobile can be with EV or walk/bike

(Match fixed monitors)

- Particulate Matter (PM_{2.5})
- Ultrafine Particles (UFP)
- Black Carbon (BC)
- Nitrogen Dioxide (NO₂)
- Carbon Dioxide (CO₂)
- GPS
- Video
- Met Data (remote)
 - Wind Speed
- Wind Direction

Source Impacts on Community Air Quality

Mobile monitoring for railyard, highways, industrial Integrate with fixed for spatial and temporal resolution

FWHA/EPA Near-Road Collaboration

Long-term near-road studies

- Highlight sharp gradients

Near roads

- Las Vegas
- Detroit
- Raleigh
- Multiple monitoring locations
 - 100 m upwind
 - 20, 100, 300 m downwind
- Multiple pollutants
 - PM (mass, number, BC)
 - Gases (CO, NO/NO₂/NO_x)
 - Speciation (VOC, PM)

- Which chemical components of air pollution (either single or in combination) cause health effects?
- What are the likely sources? Do production conditions (*e.g.*, engine type, combustion efficiency, fuel, etc) and atmospheric transformation change toxicity?
- How air pollution exacerbates diseases and if so, how?

Recent Health Effects Projects

- Epidemiological studies identifying associations focus on roadway proximity and air quality exposure measurements
- Animal toxicity studies linking exposures to adverse health effects
 - Diesel/biodiesel exhaust, Including comparison of "fresh" vs. "aged"
 - Near-road
 - Ethanol and ethanol-blend gasoline vapors
- Human toxicity studies comparing effects of diesel/biodiesel exhaust to ambient air exposures

Elements of Real-World Measurements Purpose

- How will the data be used?
- What data are needed?
 Study Design
- Controllable
- Observable but not controllable
- Not observable

InstrumentsData collectionCalibrationQA/QCMaintenanceData analysisRepairPeopleDeploymentTraining

PEMS Have Come A Long Way...

Examples of Portable Emission Measurement Systems

SEMTECH-DS CFR 1065 Compliant NDIR: CO₂, CO, HC FID: THC NDUV: NO, NO₂ Heated Sample Line ~50 lbs High Power Demand

Axion ("simplified") NDIR: CO₂, CO, HC Electrochemical: NO, O₂ Light-scattering: PM Water separation bowl ~30 lbs Low Power Demand

ParSYNC "micro-PEMS" Electrochemical: CO₂, NO, NO₂ PM: light-scattering, opacity, ionization Water separation ~10 lbs Low Power Demand

Tailor Study Design to Purpose: Examples for Onroad Vehicle Tailpipe Emissions

- Real-world effectiveness of
 - Emission standards
 - Emissions controls
- Trends over time
- Source categories
- Fuels
- Operating modes (e.g., cold starts)
- Road functional class
- Level of service, congestion
- Effect of road grade

- Identification of emissions hotspots
- Roundabout vs. signalized
 intersections
- Signal timing and coordination
- Idle reduction
- Driver behavior and driving cycles
- Alternative routes for an Origin/Destination pair
- Siting of remote sensing locations
- Comparison of transport modes (e.g., rail vs. passenger car)

Environmental Justice and High-Resolution Data

High Resolution spatial data support environmental justice research areas, including:

- Integrating chemical and nonchemical stressor data to characterize cumulative health impacts
- Characterizing environmental conditions and pollution exposure to support community decision-making

Mapping and Environmental Justice

- Map communities in terms of a variety of characteristics simultaneously, including social factors (such as race and income) along with likely exposure risks
- EJ mapping tools can help address cumulative impacts
- An EJ tool should be:
 - -Science-based
 - -Informed by community experience
 - -Endorsed and utilized by government
 - -Available for all to use
 - -Informed by public participation

-Available as a third-party validator for local issues

Lee, 2020

Challenges

- Ammonia slip
- Formaldehyde
- Ethylene oxide
- Cold Start
- High Altitude
- Other emissions processes: evaporative, running losses, brake and tire wear

International Considerations

Regions:

U.S., Europe, China, Australia Latin America Africa

Vehicle life cycle:

new vehicle markets used vehicle markets Variations in:

Fuel quality Fuel type Vehicle type/fleet Road type Land use patterns OBD I/M (etc.)

Fit-for-Purpose Mobility & Transport Solutions

- Personal passenger transport urban centers, inter-city
- Local goods transport and delivery
- Long-haul transport
- Vehicle sharing
- Autonomous vehicles
- Intermodal travel
- Work from home

Related Issues

Supply chain

Energy Transitions (e.g., more electrification)

- Critical mineral availability or substitutability
- Environmental and other implications

Spatial Variation in Real-World Light Duty Vehicle Exhaust Emission Rates

Article

pubs.acs.org/est

Geospatial Variation of Real-World Tailpipe Emission Rates for Light-Duty Gasoline Vehicles

Read Online

Tanzila Khan, H. Christopher Frey,* Nikhil Rastogi, and Tongchuan Wei

Cite This: Environ. Sci. Technol. 2020, 54, 8968–8979

Air Pollution Mapping

Environmental Science & Technology

pubs.acs.org/est

ACS AuthorChoir

Article

High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data

Joshua S. Apte,^{*,†}[©] Kyle P. Messier,^{†,‡} Shahzad Gani,[†] Michael Brauer,[§] Thomas W. Kirchstetter,[∥] Melissa M. Lunden,[⊥] Julian D. Marshall,[#] Christopher J. Portier,[‡] Roel C.H. Vermeulen,[∇] and Steven P. Hamburg[‡]

Median Organic Aerosol Concentration from a Mobile Aerosol Mass Spectrometer

Atmos. Chem. Phys., 18, 16325–16344, 2018 https://doi.org/10.5194/acp-18-16325-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

High-spatial-resolution mapping and source apportionment of aerosol composition in Oakland, California, using mobile aerosol mass spectrometry

Rishabh U. Shah^{1,2}, Ellis S. Robinson^{1,2}, Peishi Gu^{1,2}, Allen L. Robinson^{1,2}, Joshua S. Apte³, and Albert A. Presto^{1,2}

¹Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
²Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
³Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA

Vehicle Add on Mobile Monitoring Systems (VAMMS) for Wildfire Smoke

- Ambient PM is sampled through an external isokinetic probe (@ 35 mph)
- Window mount provides an easy install on any vehicle
- High resolution GPS data (<3m accuracy)
- System cost is currently high (about \$9k), but EPA is developing lower-cost solutions

RETIGO (Real-Time Geospatial Data Viewer)

- Web-based data visualization tool available to the public
- Plug and play visualization of VAMMS data:
 - Mapping
 - Time series
 - Toggle between parameters
 - Import data from other sources (e.g,. AirNow, WMO)

Courtesy: Gayle Hagler

https://www.epa.gov/hesc/real-time-geospatial-data-viewer-retigo

Set EPA

Quantification of Sources of Variability of Air Pollutant Exposure Concentrations among Selected Transportation Microenvironments

H. Christopher Frey¹, Disha Gadre², Sanjam Singh³, and Prashant Kumar⁴

Transportation Research Record

© National Academy of Sciences: Transportation Research Board 2020

sagepub.com/journals-permissions

DOI: 10.1177/0361198120929336

journals.sagepub.com/home/trr

2020, Vol. 2674(9) 395-411

Article reuse guidelines:

(\$)SAGE

Community Engaged Participatory Air Monitoring

- Partnership of a university and community-based organization
- Trained local youth
- Incorporated community members into data collection
- Temporal as well as spatial variability

Fine Particulate Matter and Polycyclic Aromatic Hydrocarbon Concentration Patterns in Roxbury, Massachusetts: A Community-Based GIS Analysis

Jonathan I. Levy,¹ E. Andres Houseman,² John D. Spengler,¹ Penn Loh,³ and Louise Ryan²

Figure 4. GIS representation of cell-averaged, 1-min average PAH concentrations near Dudley Square, derived from mobile PAS 2000CE monitoring in July/August 1999 (ng/m³).

Youth Engaged Participatory Air Monitoring

"With all of this new information, I want to educate my community on how harmful these particulates are, and how change should begin with personal choices people make throughout their day"

International Journal of Environmental Research Public Health

MDPI

Article

Youth Engaged Participatory Air Monitoring: A 'Day in the Life' in Urban Environmental **Justice Communities**

Jill E. Johnston ^{1,*}, Zully Juarez ¹, Sandy Navarro ², Ashley Hernandez ³ and Wendy Gutschow ¹ Figure 2. Map of PM_{2.5} air monitoring exposure measurements from all CBE youth participants.

Data Challenges and Opportunities

- Large datasets
- Participatory Science
- Study design (purpose)
- Space
- Time
- Instruments
- Quality Assurance Project Plan (QAPP)
- Applications: Policy, Planning, Operations, Evaluation

€PA

Opportunities

- Vehicle emissions measurements are part of multiple frameworks
 - One Health
 - Health Impact Assessment
 - Cumulative Impacts
 - Others: energy life cycle, materials life cycle (critical minerals), etc.
- Evidence-based approach to inform decisions at multiple scales: international, national, regional, community
- Integration with other scientific, technical, research, policy, planning, operations, and evaluation communities

Acknowledgements

Academia/NGO

K. Max Zhang Andrey Khlystov Tom Cahill* Akula Venkatram Ye Wu Tom Whitlow Doug Eisinger Kori Titus

California Gov't Linda Wheaton Earl Withycombe

EPA Richard Snow* Thomas Long* Vlad Isakov Sue Kimbrough* Gayle Hagler Laura Jackson* **David Heist Richard Shores Nealson Watkins** Chad Bailey Rich Cook Steve Perry* Bill Mitchell Carl Fulper **Bob Gianelli**

EPA Susan Julius Sarah Mazur Nicole Tulve Andrew Geller Sean Paul Tim Barzyk **Tonya Nichols** Bryan Hubbell Wayne Cascio **Bruce Rodan** Charles Lee Maureen Gwinn Jay Benforado* Jennifer Orme-Zavaleta*

FHWA Victoria Martinez Kevin Black* Mark Ferroni Adam Alexander

USFS Greg McPherson David Nowak

> <u>NOAA</u> Dennis Finn Kirk Clawson

<u>3DATX</u> David Miller

* Retired