Using real-world emission data to inform low-emission transportation policies and actions

Tim Dallmann PEMS 2021 Conference 11 March 2021

Transportation emissions have a significant health burden, particularly in cities

Transportation-attributable deaths from PM₂₅ and ozone pollution, mortality rates, and population in 100 major urban areas, 2015. Bubble color indicates the trade bloc in which an urban area is located. Bubble size indicates the transportation-attributable mortality rate per 100,000 population.¹

Source: https://www.theicct.org/publications/health-impacts-transport-emissions-2010-2015

TRUE seeks to supply cities with data regarding the real-world emissions of their vehicle fleets and equip them with technical information that can be used for strategic decision making.

- Leverage real-world emissions data to garner public support for new policies and help consumers make better purchasing decisions
- Utilize real-world data to calculate and compare the potential impact of different policy options
- Regular data collection through targeted campaigns or remote sensing networks to track real-world emissions in the city and enable rapid policy responses to new information
- Share real-world city-level emissions with state and federal authorities to promote impactful decision making throughout all levels of government
- Support the transition to zero tailpipe emissions vehicles

Partners:

London 2017–2018

Paris 2018

TRUE Europe remote sensing studies

Brussels 2020

Warsaw 2020

London data show elevated NO_x emissions from diesel passenger cars

Source: https://www.theicct.org/publications/true-london-dec2018

Implementation of Ultra Low Emission Zone (ULEZ) limited access to diesels accounting for 61% of total passenger car NO_x emissions

Source: https://www.theicct.org/publications/true-london-dec2018

Remote-sensing data provide evidence of very high emissions from the London diesel taxi fleet

London "black" taxis

- Euro 5 NOx emissions are as high as Euro 2...
- And 10x typeapproval limits

New policies enacted to speed transition to zero emission capable alternatives

Diesel vehicles are predominant in Paris and NO_x emissions are well above regulatory limits

Figure 11. Estimated share of annual NO_x emissions from passenger cars and respective share of remote sensing measurements in Paris, differentiated by Euro standard and fuel type.

8

Paris data applied to assess impacts of Paris Low Emission Zone implementation

Implementation of Phase 5 of Paris LEZ in 2024 will accelerate NO_X reductions by 7-10 years

Figure 6. Estimated effects of Paris LEZ on passenger car fleet average NO_x emission factors, with summer emission factors and optimistic

registration assumptions.

https://www.trueinitiative.org/data/publications/impacts-of-the-paris-low-emission-zone-and-implications-for-other-cities

Brussels and Warsaw 2020 remote-sensing campaigns

ON CLEAN TRANSPORTATI

Test program:

- Sampling over 4 weeks from end of September to November
- Over 250,000 records with a valid gas reading

Objectives:

- Study the performance of latest Euro 6d vehicles
- Quantify the average fleet emission impact of vehicles
 movement from Western to Eastern Europe
- Inform LEZ in place (Brussels), or yet to come (Warsaw)

TRUE U.S. work aims to leverage existing remote sensing data

Millions of remote sensing records are collected each year in the United States.

This work focused on compiling data into a single database and exploring how data can be analyzed to better understand the real-world emissions of the U.S. fleet.

TRUE U.S. database overview

- ~60 million records
- Data collected from 2010–2018
- Hundreds of sampling sites
- Most data for LDVs and LDTs
- Data represent broad range of driving and ambient weather conditions

LDV and LDT emission trends

Light-duty vehicles Light-duty trucks 125 100 arbon 75 monoxid 50 25 Average fuel-specific emissions (g/kg) Hydrocarbons 10 Nitrogen monoxide 20 10 2010 1990 2000 2010 2020 1990 2000 2020 Model year

Dataset — Colorado — University of Denver — Virginia

Fleet-average emissions for gasoline LDVs and LDTs show significant downward trend in response to implementation of more stringent standards.

Average fuel-specific pollutant emissions (g/kg fuel) of gasoline light-duty vehicles by vehicle class and data source.

HDV NO_x emission trends

EPA Standards
4 g/hp-hr (26.6 g/kg)
2 g/hp-hr (13.3 g/kg)
0.2 g/hp-hr (1.33 g/kg)
0.2 g

Data also provide further evidence of elevated NO_x emissions from diesel trucks under low-speed urban operating conditions.

Figure 3. Average fuel-specific NO_x emissions by engine model year and comparison to U.S. EPA standards. Uncertainty band shows the 95% confidence interval.

Impact of vehicle age on emissions

Database provides detailed information on how emissions change as vehicles age.

Real-world deterioration rates can be many times higher than manufacturer reported values.

Average fuel-specific NO emissions of gasoline light-duty vehicles and light-duty trucks per model year and vehicle age.

Emissions distribution by vehicle age

For LDVs, the contribution of the oldest vehicles in the fleet to total NO mass emissions has increased over time.

Policies targeting the oldest vehicles in the fleet can have outsized impact.

Figure 3. Cumulative share of light-duty NO mass emissions by vehicle age.

Identification of atypical real-world emissions performance

Influence of ambient temperature on diesel pickup truck emissions

ON CLEAN TRANSPORTAT

Seoul & Provinces

Seoul

- Analysis of 1-yr of remote sensing data collected in Seoul
- >500,000 records
- Detailed evaluation of emissions from Seoul fleet and implications for emission control policies such as the Green Transport Zone

Seoul moves to block high-emission vehicles from city center

Green Transport Zone / Courtesy of Seoul Metropolitan Government

http://www.koreatimes.co.kr/www/nation/2020/10/281_274335.html 18

Jakarta remote sensing testing

- 3-month testing study (2021)
- Improve understanding of real-world emissions
- Inform existing and planned emission control policies
 - Implementation of Euro 4 emission standards
 - Vehicle inspection
 program
 - Access restrictions
 - Vehicle age limits

Mexico City

- Data regularly collected by Mexico City
- Most recent data collected in 2019 show high HC emissions, especially from taxis
- Evaporative emissions likely contribute to high HC readings

ON CLEAN TRANSPORTATIO

Figure 2. Mean HC by Model Year for CDMX Private Vehicles & Taxis, with 95% CI

Summary

- Measuring and publishing real-world emissions data can be impactful
- Remote sensing is a well suited for obtaining fleetwide real-world emissions data
- Remote sensing data can be applied in many ways to build understanding of real-world emissions and inform evidence-based policy evaluation and development – at both city and national levels

Questions? Contact t.dallmann@theicct.org

