

Vehicle interior air quality Pollution exposure in the cabin and the opportunity for standardized international ratings

Nick Molden March 2021

Our Belief

When it comes to the pursuit for improved air quality, we believe in the power of clarity, transparency and integrity. With real-world data we can meet emissions challenges – instilling trust and confidence in our industry partners and public.

It's with our commitment and independence we are able to make a significant contribution toward positive change and to achieve enduring results.

Introduction

- Founded in 2011
- Headquartered in the UK
- Operations in UK, Germany, USA and South Korea
- Independent testing house specialising in real-world emissions testing
- Over 2,500 vehicles/ machines PEMS tested across passenger, commercial and off-road
- Largest commercially available database of real-world emissions data
- We work with regulators, OEMs, Tier 1/2 suppliers, fuel and chemical companies, fleets, consumer media
- Chair of EU CEN Workshops 90 and 103

Overview

- Vehicle Interior Air Quality is unregulated
- Except in a limited way when deemed a workplace
- Pollutant exposures can be higher inside than outside
- Has health and safety effects
- China is leading new regulations, but with limited scope
- Opportunity to accelerate understanding through new standards

Independent testing

ASSURED I INDEPENDENT | RESPONSIVE

Light-duty test cycles

- Normal cycle defined geographically
- With multiple repetitions
- And dynamic boundary condition verification
- Extended cycle driven flexibly to take in range of operating conditions
- Outside RDE boundaries, especially for v*a_pos@95 and RPA
- No extreme altitudes, gradients and temperatures
- Total length ~4 hours
- Exact cycle not published

EQUA database

- Ranking by pollutants •
- Segmentation •
- Meta data

•

EQUA

Drill-down

A	VALYTICS	Home	Vehic	les 👻	Analysis 🗸	Admin 👻	Search b	y ID		۹		Hello Nicl	k Molden	Log
Real-wo	rld NO _x Official N	IO _x Ex	ceedance F	actor	Urban NO _x	Rural NO _x	Motorway NO _x	Coml	bined fNO ₂	Cold S	tart Uplift DPF Rege	n Uplift		
	Ga	soline					Diesel				Hyl	brid		
#	Manufacturer	NO _x	МоМ	YoY	#	Manufacturer	NO _x	МоМ	YoY	#	Manufacturer	NOx	МоМ	YoY
		g/km					g/km					g/km		
1	Dacia*	0.003	1-		0	Seat	0.026		Ð	1	Lexus	0.005	Ð	1-
2	Mitsubishi	0.004	2 -	1*	2	Audi	0.102	2-	2-	2=	Hyundai*	0.007	2 -	2-
3 =	Infiniti [*]	0.006	3 -	2 🎔	3	Mini	0.107	3 -	3 -	2=	Toyota	0.007	2 -	3^
3=	Subaru*	0.006	3 -	2 🎔	4	Skoda	0.126	4 -	4-	4	Suzuki [*]	0.008	4-	3~
5=	Bentley*	0.010	5 -	4*	5	Volkswagen	0.170	5 -	5 -	5	Kia*	0.009	5 -	5 -
5 =	Land Rover*	0.010	5 -	4*	6	Jaguar	0.176	6 -	6 -	6	Audi*	0.011	6 -	6 -
5 =	Suzuki	0.010	5 -	4*	0	BMW	0.197	7-	7-		Market Average	0.020		
5 =	Toyota	0.010	5 -	4*	8	Toyota*	0.198	8 -	8 -	0	Mercedes-Benz*	0.094	7-	7-
9	Honda	0.011	9 -	8 🏏	9	Land Rover	0.216	9 -	9-					
10	Volvo	0.012	10 -	8 🗸	10	Peugeot	0.238	10-	10 -		Plug-in	Hybrid		
11 =	Fiat	0.015	11 -	10 💙	11	Porsche*	0.281	11 -	11-	#	Manufacturer	NOx	МоМ	YoY
11 =	Hyundai	0.015	11 -	10 🗸	12	Citroen	0.298	12 -	12 -			g/km		
11 =	Jaguar	0.015	11 -	16 🔨	13	Mazda	0.301	13 -	13 -	1	BMW*	0.007	1-	1-
11 =	Seat	0.015	11 -	10 🗸	14	Mercedes-Ben	z 0.327	14 -	13 🗸	2	Volkswagen*	0.008	2 -	2-
11 =	Skoda	0.015	11 -	10 🗸	15	DS*	0.355	15 -	15 -	3	Hyundai [*]	0.010	3 -	3-
16	Ssangyong*	0.016	16 -	14 💙	16	Volvo	0.369	16 -	16 -	4	Audi [*]	0.011	4 -	4 -
17	Volkswagen	0 017	17 -	15.9	17	Opel/Vauxhall	0 370	17 -	17 -	5	Kia*	0.015	5 -	5-

Log out

Pollutant infiltration

ASSURED I INDEPENDENT | RESPONSIVE

Cabin air quality – real-world testing

• Pollution in-cabin measurement system: PN (15nm) and CO₂ at 1Hz

On-road particle infiltration

•

٠

EQUA

Carbon dioxide build-up

- CO₂ rises steadily from background
 - Can reach 3,000ppm even with just driver
 - Cognitive impairment above 1,000ppm
- No issue on fresh air mode

EQUA

Time, seconds

11

Static air exchange rate

- Canister of particles deployment for instant spike in concentration
 - Quickest clean-up on recirculation and maximum fan speed

Time, seconds

12

97-car test programme

- PN concentration in cabin up to 3.5 times ambient, on fresh air mode
- CO₂ concentration can treble in 30 minutes on recirculation

Particles vs carbon dioxide

 No correlation at OEM level between PN filtration rate and CO₂ buildup

HVAC set-up and filter choice can move tradeoff by multiple factors

14

•

Volatile organic compounds

ASSURED I INDEPENDENT | RESPONSIVE

Cabin air quality – VOCs

- New Chinese regulations will cover eight target compounds from 2021 (limits in μ g/m3)
- Methanol and Acetone built up with windows closed across daytime test
- During venting with windows open and AC on, there was a peak of acetaldehyde

Analyte	China	Japan	Korea	Symptoms
Formaldehyde	100	100	100	Respiratory irritant and a contributory factor in asthmas and cancer
Acetaldehyde	50	48	No limit	Causes 'flush reaction' among some populations – itchiness or blotchiness of the skin and a flushed complexion
Acrolein	50	No limit	No limit	Highly toxic and severely irritating to the eyes, mucous membranes, respiratory tract, and skin
Benzene	110	No limit	30	Known carcinogen and declared as such by the US Environmental Protection Agency
Ethylbenzene	1500	3800	1600	Can cause throat irritation, and dizziness at higher concentrations
Xylene	1500	870	870	Causes headaches, dizziness, drowsiness, and nausea
Styrene	260	220	300	Causes headaches
Toluene	1100	260	1000	Solvent familiar as nail-polish remover, can cause headaches and nausea
Tetradecane	No limit	330	No limit	Irritating to the eyes, mucous membranes, and upper respiratory tract, and can cause skin irritation.

CONFIDENTIAL © Emissions Analytics 2021 16

International ratings

ASSURED I INDEPENDENT | RESPONSIVE

Methodology development

ARTICLE INFO

Article ID: 02-12-02-0012 Copyright © 2019 SAE International doi:10.4271/02-12-02-0012

Development of a Standard Testing Method for Vehicle Cabin Air Quality Index

Liem Pham, University of California, Riverside, USA Nick Molden and Sam Boyle, Emissions Analytics, UK Kent Johnson and Heejung Jung, University of California, Riverside, USA

Vehicle cabin air quality depends on various parameters such as number of passengers, fan speed

Abstract

EQU

History

Received: 14 Dec 2018 Revised: 14 Mar 2019 18

CEN Workshop 103

- Kicked off 4
 November 2019 in
 Brussels
 - Nick Molden appointed chairman
 - Wide attendance of OEMs, suppliers and cities

2019-08-05

Draft

Project Plan for the CEN Workshop on real drive test method for collecting vehicle in-cabin pollutant data (CEN/WS 103)

Workshop

(to be approved during the Kick-off meeting on 2019-11-04)

Workshop scope

- Volatile Organic Compounds (VOCs): Covered by other programmes
- Particle mass: Established health effects, but low in-cabin concentrations
- Particle number: Growing health evidence, and high in-cabin concentrations
- Carbon dioxide: Consequence of using recirculation to protect from external pollution
- Nitrogen dioxide: Illegal ambient levels in many cities, but low absolute concentrations
- Flexible to include others

Conclusion

- Human exposures inside vehicle matter
- Combination of particles, CO₂ and VOCs
- Chinese regulations are driving changes in materials
- Performance of the HVAC system needs attention
 - Voluntary standardisation is underway

Thank you.

Nick Molden Chief Executive Officer nick@emissionsanalytics.com +44 (0)20 7193 0489

ASSURED | INDEPENDENT | RESPONSIVE

ASSURED | INDEPENDENT | RESPONSIVE

Assured

Emissions testing in real-world conditions brings challenges that experience anticipates and expertise overcomes. We deliver.

Independent

Objectivity and candour are the driving forces in all our work, so you know the facts.

Responsive

We're fast on our feet so we can conduct emissions testing when and where we're needed.

