PROS & CONS OF DIFFERENT AIR QUALITY SENSORS

Bourns College of Engineering - Center for Environmental Research and Technology

CE-CERT has been using a variety of sensors working with the community over the last several years, and we. This is a summary of the pros and cons we have observed with the sensors, it is not comprehensive or to be used to compare the accuracy of the sensors; it is merely our observations and what has guided our decision making for purchasing sensors for different applications. We will be updating this sheet regularly with new information. For a quantitative assessment of the performance of the sensors, visit AQSPEC.

Low-Cost Sensors

Low cost air quality sensors are cheaper than government-used sensors, thus making them available for individual citizens and neighborhoods to purchase and use for themselves. They are generally flash memory or cloud-based and are able to record real-time data on air quality parameters. Here are some to name a few.

SENSOR	PRO	CON
PurpleAir sensor	 Public online cloud-based map. Connects to wi-fi Cost is around \$250, one time fee Usually decently accurate for up to 2 years if calibrated 	Must be connected to a power source
<u>Clarity sensor</u>	 Solar rechargeable Connects to wi-fi Internal battery Usually decently accurate for up to 2 years if calibrated 	 Private online cloud-based map. Cost can approach \$1000 per year, subscription basis
DIY sensor – <u>Raspberry Pi</u> <u>Sensor</u>	 Learn individual parts of an air quality sensor 	 Not calibrated (designed only for qualitative use) Requires initial coding
DIY sensor – <u>Smart Citizen</u> <u>Kit</u>	 Learn individual parts of an air quality sensor Very easy to assemble Low Cost, ~\$100 Interactive website 	Not calibrated (designed only for qualitative use)