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Abstract—Intelligent Transportation System (ITS) technology 

often aims at improving traffic safety and mobility. In recent 
years, a number of ITS applications have also been developed to 
reduce environmental impacts from greenhouse gases and 
pollutant emissions. Typical eco-friendly ITS applications (e.g., 
eco-routing) focus on reducing overall vehicle emissions. 
However, pollutant emissions from vehicles would cause more 
adverse impacts on public health where there are more 
population living closer to the emission sources (i.e., roadways). 
To date, eco-friendly ITS applications have not been developed 
from a pollutant exposure point of view. In this paper, we 
introduce a new vehicle routing method that goes beyond 
minimizing overall pollutant emissions; instead, we aim to 
minimize pollutant exposure to the localized population along 
the roadways. As part of the method, the human inhaled mass of 
pollutants is modeled and used as part of the routing cost. 
Modeling results show that the inhaled mass of fine particulate 
matter for the selected susceptible population can be reduced by 
approximately 30% - 80% on a typical workday with the 
implementation of the proposed vehicle routing method. 
 

Index Terms—route plan, mobile-source, emission, pollution, 
exposure 

I. INTRODUCTION 

   Over the last decade, several eco-friendly intelligent 
transportation system (Eco-ITS) applications have emerged 
are geared towards improving energy efficiency and reducing 
environmental impacts of transportation. Examples of Eco-
ITS applications include eco-signal operations, low emission 
zones, eco-integrated corridor management, and eco-traveler 
information systems (see, e.g., [1]). In addition, new eco-
routing algorithms have been developed to give travelers an 
alternative means of routing in order to minimize fuel and 
emissions (see [2, 3]). Eco-routing has been shown to be 
effective, but it is focused specifically on individual vehicles 
with the goal of minimizing energy and emissions on a large 
regional basis. To date, eco-routing and other Eco-ITS 
applications only consider minimizing mass emissions, 
instead of considering the exposure of unhealthy pollutants to 
humans. In many communities, on-road traffic emissions are 
of great concern due to heavy on-road traffic and densely 
populated communities that are adjacent to roadways. For 
example, in Los Angeles, California, more than 30% of the 
population is living within 50-100 meters of major roads [4]. 
Most pollutants disperse away from the roadways, but 
pollutant concentrations near the roadways are often 2-4 times 
higher than 100 meters away [5].  
   Built on a previous conference paper [6], this study aims at 
enhancing the proposed vehicle routing method that reduces 
pollutant exposure by localized population along the 
roadways. Essentially, the pollutant exposure to residents near 
roadways is estimated and used as a weight for vehicle routing 
to reduce overall exposure, while also considering 
economical travel duration. For the overall method, a similar 

modeling suite has been applied to assess pollutant exposure 
based on specific vehicle activities. This study, however, 
considers a range of details regarding spatial and temporal 
factors. The concept is particularly valuable for routing or 
regulating high-emitting vehicles near sensitive communities 
such as schools or disadvantaged neighborhoods. 

II. MODELING METHODOLOGY 
   The methodology follows the modeling chain shown in Fig. 
1, which is borrowed from our previous work [6]. The 
feedback loop on the top indicates that the modeled results of 
pollutant exposure can, in turn, be used to influence the traffic 
activities and hence mitigate pollutant exposure. Each model 
and data source that connects the four components in this 
research is described in the following subsections. 
 

 
Fig.  1. Flow diagram of overall traffic pollutant exposure modeling 

method (from [6]) 

A. Traffic Activity Acquisition 
   A digital roadway map is at the heart of any routing or 
navigation application. The map represents geographic 
features (e.g., location, length, shape), and stores attributes 
(e.g., road type, lane number, speed limit) of the roadway 
network. Then, traffic activities on roadways are estimated 
based on traffic demand and network attributes. For traffic 
activity parameters, many traffic measurements and models 
focus on overall traffic speed, traffic flow, and fleet 
composition. These parameters are available either from real-
world measurements (e.g. Caltrans Freeway Performance 
Measurement System (PeMS) [7]) or transportation models 
on a roadway link-by-link basis. In this research, we use street 
map of North America provided by ESRI due to the highly-
detailed street information [8]. Posted speed limit values are 
assigned as average traffic speed in this study.  

B. Traffic Emission Modeling 
To evaluate the mesoscale emission factors (usually in units 

of gram/mile/link), the link-based traffic activities are fed into 
an emission model. There are several emission models 
developed for regulatory or research purposes. Examples 
include EMFAC (EMission FACtor model) developed by the 
California Air Resources Board (CARB), which is used for 
regulatory purposes in California [9], and MOVES (MOtor 
Vehicle Emission Simulator) by the U.S. Environmental 
Protection Agency (EPA), which is used for regulation in the 
other 49 states [10].  
   For this particular implementation, EMFAC2011 is applied 
for mesoscale emission factor calculation because it has well-
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established fleet composition database for California counties 
and air basins. Emission factors for specific vehicle categories 
are extracted from EMFAC2011 online database [11]. Then, 
link-by-link emission factors are determined based on the 
overall traffic speed on the links and saved as a new attribute 
of the roadway network. In the case study, we will introduce 
diesel trucks as the primary sources in details (III A.).  

C. Dispersion Modeling 
Next, an atmospheric dispersion model is utilized to 

estimate the concentration of air pollutants emitted from 
traffic sources at specific receptor locations. Many dispersion 
models have been developed and applied for regulatory and 
research analyses since the mid-to-late 1980s. Recently, the 
U.S. EPA released R-LINE, a research grade dispersion 
model for near-roadway assessments. It is based on a steady-
state Gaussian formulation and is designed especially to 
simulate dispersion of line source emissions [12]. R-LINE 
requires the same surface micrometeorology inputs as 
AERMOD and performs accurate estimation [13]. In addition, 
R-LINE has a succinct input configuration, and computes 
much faster than AERMOD. Therefore, R-LINE is used in 
this research. The underlying relationship between pollutant 
concentration and the line source emissions in R-LINE can be 
expressed as: 

 
      𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑓𝑓(𝑄𝑄, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑙𝑙,𝑚𝑚𝑠𝑠𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠𝑚𝑚𝑦𝑦 )        (1) 

   where C(x,y,z) denotes the pollutant concentration at a 
receptor location. Q is the traffic emission rate in 
g/meter/second, acquired from traffic emission modeling in 
the previous step. For source location, the coordinates of each 
line segment’s starting and ending nodes are required. 
Micrometeorology data inputs for R-LINE such as 
temperature, wind speed, wind direction, surface friction 
velocity, and Monin-Obukhov length are obtained from the 
SCAQMD (South Coast Air Quality Management District)’s 
website [14]. For more details about the configuration, please 
refer to the R-LINE user guide [13]. 

D. Exposure Assessment 
   In this research, pollutant exposure is referred to the amount 
of pollutant inhaled by a group of subjects. Bennett et al. 
clarified several frequently-used terms applied in exposure 
study, such as intake and intake fraction [15]. To assess the 
pollutant intake, inhaled mass (IM) is used as a metric and is 
calculated as: 
 
                              𝐼𝐼𝐼𝐼 = 𝐶𝐶 ∙ 𝑃𝑃𝑠𝑠𝑃𝑃 ∙ 𝑙𝑙 ∙ 𝐵𝐵𝐵𝐵                              (2) 
   where C is the pollutant concentration (µg/m3) in a given 
microenvironment as calculated by R-LINE. Pop is the 
number of subjects in the microenvironment. t  is the duration 
of each trip (hour), and BR denotes the breathing rate 
(m3/hour/capita) of the subjects exposed to the pollutant. It is 
of interest to reduce susceptible population’s exposure to 
traffic-related air pollutants because tailpipe emissions, such 
as fine particulate matter and volatile organic compounds, are 
associated with health risks in young children, older adults, 
patients, and even healthy adults [16]. Therefore, in this 
research we apply the proposed routing algorithm to high-

emitting vehicles (e.g., diesel trucks) in order to minimize the 
target population’s exposure to certain pollutants for the 
purpose of protecting their health. 

E. Vehicle Routing Problem 
   The traditional vehicle routing problem (VRP) initially 
aimed at finding a travel route with the shortest distance. With 
the improved sensing technologies that collect real-time 
traffic speed, vehicle routing algorithms are now able to 
minimize the total travel time for drivers. In this research, 
given a pair of origin-destination (OD) points, it is desirable 
to minimize inhaled mass while constraining the increase of 
travel time within a practical range for a trip. This is a multi-
objective VRP studied by many researchers (e.g., [17]). 
Several methods for solving multi-objective VPR were 
summarized by Demir et al. [18].  
   In this research, we use a weighting method that transforms 
the multi-cost routing into a single-cost routing problem. The 
inhaled mass is incorporated into the route calculation as in:                                 
 
                𝑤𝑤𝑠𝑠𝑙𝑙𝑚𝑚ℎ𝑠𝑠𝑒𝑒_𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑘𝑘 = ∑ (𝑤𝑤𝑓𝑓 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑓𝑓,𝑘𝑘

𝐹𝐹
𝑓𝑓=1  )       (3) 

 
   where weighed_costk is the combined cost for link k; wf is 
the weight factor for costf,k (a single cost f for link k). costf,k 
can be distance, duration, monetary cost, or, in this research, 
pollutant exposure. There are a total of F single costs and 
weigh factors, and ∑ 𝑤𝑤𝑓𝑓𝐹𝐹

𝑓𝑓=1 =1. Given tk is the driving time for 
link k derived from link length and link average speed. When 
wf for travel duration is 1, it becomes a simple least duration 
routing problem. When wf for pollutant exposure is 1, it means 
the pollutant exposure is the only cost. Since the two costs 
have different units and numerical ranges, normalization is 
applied as: 
 

𝐼𝐼𝐼𝐼𝑘𝑘 = 𝐼𝐼𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜/𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚                      

𝑙𝑙𝑘𝑘 = 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜/𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 
where IMorig and torig  are the original inhaled mass and 
duration cost of a link with their original dimension. IMmax 
and tmax are the maximum inhaled mass and duration cost of a 
link in the entire network. 

The overall routing algorithm finds a route with the least 
total cost for a given OD pair where: 

 
               𝑙𝑙𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑜𝑜𝑜𝑜∈𝐿𝐿                   (4) 

and L is the set of links in the least-cost path computed by the 
routing algorithm. The total cost is sensitive to wf. A 
sensitivity analysis of wf was presented in the previous sudy 
[6]. Based on the sensitivity analysis, we select specific 
weight factors to balance the tradeoff between travel duration 
and pollutant exposure. Section III provides more details 
about the experiment. 

It is important to note that inputs to the modeling process, 
including weather, traffic condition, and human activities, are 
highly dynamic in the real world. In this research, we need to 
specify time scenarios of these inputs for the calculation of 
link costs (i.e., pollutant exposure and travel duration). Once 
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link costs and OD pairs are determined for a scenario, low-
exposure routes can then be calculated and visualized.  

III. EXPERIMENTS AND RESULTS 
   This section introduces a case study area for our low-
exposure road navigation in calendar year 2010. To conduct 
an experiment on the low-exposure vehicle routing, we 
consider the roadway network in the Reseda-Northridge area 
in Los Angeles (LA) County, California, as shown in Fig. 2. 
This area is chosen because the road network represents a 
variety of road types, including freeways, arterials, and 
collector roads. In addition, it has a high percentage of seniors 
and children population. According to the 2010 U.S. Census, 
this 64-square-mile area is home to more than 531,000 
residents. Adults 65 years and older make up 11.8% of the 
total population. Children 5 years old and below make up 
another 6.3% [19]. Additionally, many residential zones, 
primary schools, and senior centers in this area are located 
near the roadways.  

 
Fig. 2 Map of the facilities within the Reseda-Northridge area 

As Fig. 2 illustrates, the area is bounded by Interstate-405, 
U.S. Route-101, State Route 118 and State Route 27. I-405 
and US-101 freeways are heavily traveled by both commuters 
and freight traffic. When heavy-duty trucks enter this area to 
deliver goods at local stores, they are likely to pass the 
daycare centers, senior homes, and other facilities which are 
located right next to the roadways. And their tailpipe 
emissions could pose potential health risks to the people in 
those facilities. Therefore, the area presents an interesting 
case study where the low-exposure vehicle routing can be 
applied to reduce the susceptible population’s inhaled mass 
of traffic-related air pollutants. 

A.  Vehicle Emission Estimation 
   In this experiment, we focus on air pollution from diesel 
exhaust. Diesel exhaust is a mixture of gaseous and particle 
pollutants. A number of health studies have shown that even 
acute exposure to diesel exhaust can trigger transient irritation 

and inflammatory symptoms. And chronic exposure of diesel 
exhaust is likely to cause severe damage to human lung 
function [20]. In this experiment, fine particulate matter 
(PM2.5) and is chosen as the pollutant of interest in particle 
and gaseous forms of diesel exhaust, respectively.  
   The experiment vehicle is chosen as tractor trailer diesel 
trucks, which are widely used in goods distribution. In the 
experiment year of 2010, most tractor trailer trucks in LA 
County are of model year (MY) 2005, according to 
EMFAC2011’s database. These MY 2005 trucks emit 10.5 
times more PM2.5 than MY 2010 trucks, which are required to 
be equipped with advanced emission control technology. 
Hence, the low-exposure vehicle routing could be used as an 
impact mitigation strategy for these older trucks. In our 
experiment, we examine how old trucks that use low-
exposure routes would compare with newer and cleaner 
trucks using regular routes (shortest duration routes) in terms 
of pollutant exposure by sensitive population. 

B. Dispersion Modeling Implementation 
   There are three major inputs for dispersion modeling: 
receptor locations, roadway links as line sources, and 
meteorology parameters. Table 1 tabulates the major inputs 
and their data sources for the dispersion modeling in R-LINE.  
 
Table 1 Major inputs and data sources of R-LINE implementation 

Input 
block Description 

1 File title 

Source User specified text for each run, e.g. 
'2010ResedaPM2.5_T7MY2005_Hr10' 

2 
Input source file: Link Index and 3-demention  coordinates for both 
nodes, offset distance, initial σz, number of lanes, emission factor, road 
barrier location and height, suppressed source specification 

Source 

All facilities’ centroids are indexed uniquely, and centroids of 
residential area buffers are indexed uniquely. Cartesian coordinates of 
receptors are extracted using ArcMap tool ‘Add XY’. Elevations are 
mapped from USGS DEM database [21]. A link is considered as the 
center line of a road so offset distance is zero. Road barrier and 
suppressed road are not considered. σz please see R-LINE user guide 
[13]. Emission factor is calculated in Section III.A 

3 Receptors Index and 3-demention Cartesian coordinates 

Source 

Receptors Index is nominal. Cartesian coordinates of receptors are 
extracted using ArcMap tool ‘Add XY’ and saved in matfiles. 
Receptors are placed at a typical breathing height of 1.5 m. Receptor 
elevations are mapped from United States USGS DEM database. 

4 

Meteorology inputs: date, hour, sensible heat, surface frication 
velocity, vertical convective velocity, Vertical Potential Temperature 
Gradient, Monin-Obukhov length, wind speed, wind direction, 
reference height, temperature, convective and mechanical boundary 
layer height etc. 

Source 
All the inputs are provided by South Coast Air Quality Management 
District meteorology data [14]. The meteorology station is Reseda 
Station which is located in the south of the experiment network. 

5 Run specifications, e.g. time average options, analytical or numerical 
solution etc. 

Source This experiment chooses 1 hour average with analytical solution. Lane 
width is set as 3 meter. Other options please see user guide [13]. 

C. Exposure Assessment and Network Characterization  
Recalling Eqn. (2), inhaled mass is a function of pollutant 
concentration, exposure duration, breathing rate, and the 
number of population. In this experiment, hourly averaged 
pollutant concentration is estimated, and the exposure 
duration is set to one hour. Pollution distribution becomes an 
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important parameter that affects the collective IM that tractor 
trailer trucks could impose.  
   Table 2 tabulates the facility types and the estimated 
number of population, and the spatial distribution of facilities 
are mapped in Fig. 2. The main reason for selecting these 
facilities is because of their population’s susceptibility to 
various air pollutants [22, 23]. Other than the selected 
facilities, residential homes are also included because they 
should be protected from diesel exhaust as well. A breathing 
rate of 15 L/min is assigned to all the population [24]. 
 

Table 2 Sensitive facilities  considered in the experiment 

 
Note: Data sources are introduced in [25] and [26] 

   Population estimation requires multiple steps of data 
preprocessing. First, local population in different age groups 
at the block level is extracted from the 2010 U.S. Census 
depository and linked to GIS (geographic information system) 
shapefiles [19, 27]. Next, we use geoprocessing tools in 
ArcMap to join the nearby census blocks to facilities, and then 
summarize the number of population in an appropriate age 
range for each facility. Finally, the estimated population value 
at each facility is calibrated according to California schools’ 
enrollment rates [25] and other available information (e.g., 
review websites) in order to simulate the real-world situation 
to the best extent possible.  
   The pollutant concentration at each sensitive facility 
contributed by each roadway link is calculated by R-LINE. 
As air pollutants from one roadway link may reach several 
facilities, the total inhaled mass for the roadway link is the 
sum of the IM values from all the affected facilities.   
   IM values of the population in residential homes are 
calculated independently from those of sensitive facilities. In 
general, the IM values are positively correlated with the 
population density in the nearby residential areas.  
  Next, the facility IM and residential IM are aggregated, and 
the final PM2.5 IM map of the roadway is shown in Fig. 3. 

  
Note: IM is from one MY 2005 tractor trailer trucks. Test nodes are selected 

approximately 0.2 miles apart from each other in commercial zones 
Fig.  3 Aggregated contribution to PM2.5 inhaled mass (µg/link) 

from roadway links in the experiment network and locations of test 
nodes 

   Generally, the aggregated IM values of the roadway links 
are sensitive towards the critical variables shown in Eqn. (1), 
including traffic activity, dispersion condition, and the 
number of sensitive population in the proximity. In the 
experiment, IM calculation for the network should be repeated 
if any critical variables mentioned above changed. 
   Meanwhile, the aggregated IM values for the roadway 
network are calculated for PM2.5. With the IM values 
synthesized for the entire roadway network, it is now possible 
to execute the low pollutant exposure vehicle routing 
algorithm with a constrained travel duration. Given an OD 
pair, a least duration route is computed using the Dijkstra’s 
algorithm [28]. Then, a low exposure  route is calculated using 
the weighting method described in Section II-E. The 
calculations are scripted in Matlab. The tested OD pairs are 
described in the following section. 

D. Experiment Scenarios 
  To compare the low exposure route and the least duration 
route, we set up a few experiment scenarios. As explained in 
Section III-A, we choose PM2.5 as the pollutant that we desire 
to reduce for the selected population groups. The weight 
factors (Eqn. (3)) for normalized travel duration and 
normalized PM2.5 inhaled mass are 0.5 and 0.25, respectively.  
   We first consider a baseline scenario A, where a MY 2005 
truck is driven to several grocery stores in the area around 
10:00 a.m. on a typical work/school day in May 2010. The 
truck takes the least duration route (LDR). To estimate the IM 
reduction of the low exposure route (LER), we set up another 
scenario where the same truck takes the LER instead. 
 

Facility 
type

Target 
population

Population data 
source

Number 
of 

facility

Average
population per 
facility during 

experiment hour

Preschool
Children 5 

years old and 
below

Census 2010 and 
US preschool 

enroollment rate
30 202

Elementary 
and middle 

school

Children 6-
14 years old

Esri North America 
Map Series, Census 
2010, and California 
elementary school 

enrollment

44 254

High schoolTeenager 15-
17 years old

Esri North America 
Map Series, Census 
2010, and US high 
school completion 

rate

35 176

Senior 
center

65 years old 
and above

Census 2010 and 
review websites 19 596

Medical 
center/Hosp

ital 
All age

Esri North America 
Map Series and 

Census 2010
12 454

Park All age
Esri North America 

Map Series and 
Census 2010

34 36
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   To test a variety of trip scenarios, we choose 400 OD pairs 
for potential driving trips. Fig. 3 shows 50 test nodes in each 
side of the area. These test nodes are used to create 400 OD 
pairs.  The setup covers a wide range of route directions for 
an unbiased evaluation of IM versus travel duration tradeoffs. 
Both the LER and the LDR are calculated for all the 400 OD 
pairs. Then, the travel duration and IM for each OD pair are 
compared between the LER and LDR. 

 

E. Experiment Results 
   In one example trip scenario, the calculated routes are 
shown in Fig. 4 with satellite image overlay. The pink line 
represents the LDR (Route A in Table 3), and the green line 
represents the LER (Route B in Table 3). The comparison 
results are summarized in Table 3. It can be seen that choosing 
the LER for this example trip on a work/school day results in 
a significant IM reduction because it passes fewer sensitive 
facilities and residential areas.  

 
Fig. 4 LER and LDR of an example trip 

Table 3 Comparison results between experiment scenarios 

 
Note: Change is relative to the baseline scenario A. The mass 

emission and IM are for the one truck in the experiment. 
 
   When comparing Route B to Route A, the travel duration 
increases 40 seconds (3%) while the IM values reduce by 87%. 
It suggests that with a relatively small adjustment, the LER 
can lead to a significant reduction in pollutant intake by 
susceptible population groups.  
  To better understand the effects of LER, the IM and duration 
results for all the 400 LER trips are compared with their LDR 
counterparts. Fig. 5 shows that for 30% of the routes, the LER 
and LDR are identical, resulting zero IM reduction. Other than 

that, PM2.5 IM can be significantly reduced by the low 
exposure routing method. For example, about 40% of the trips 
lead to more than 30% inhalation reduction.  
 

 
Fig. 5 PM2.5 IM reduction for 400 OD pairs 

 
Fig. 6 Driving duration increase for 400 OD pairs 

   Fig. 6 shows that 96% of the LER driving trips’ duration 
increases no more than 10%. For LER with prolonged driving 
time, we can adjust the weighting factors and iterate LER 
calculation until it reaches a desired balance between driving 
time and IM reduction. Generally, in a diverse roadway 
network such as in this case study; there are often alternative 
routes for high-emitting vehicles to travel so that their 
emission impacts on the local population could be mitigated.  

IV. CONCLUSIONS AND FUTURE WORK 
   In this paper, we introduce a novel vehicle routing method 
that aims to minimize overall population’s inhaled mass of 
traffic-related air pollutants for driving trips within a 
reasonable range of trip duration. This method is 
accomplished using a modeling suite that relates traffic 
activity, to emissions production, to dispersion modeling, and 
finally to human inhalation. It is found that the total pollutant 
exposure by target population groups can be greatly reduced 
with small adjustments to route choice. Compared to the least 
duration route, the low exposure route can lead to more than 
30% reduction in pollutant exposure for about 40% of the 400 
simulated trips while keeping the increase in trip duration to 
no more than 10%.  
   Therefore, using local population activity and atmospheric 
dispersion parameters, it is possible for high-emitting vehicles 
(e.g., heavy-duty diesel trucks) to find routes that could cause 
lower health impacts on sensitive population groups such as 
children, seniors, and patients. The concept is particularly 
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valuable for routing or regulating high-emitting vehicles near 
sensitive communities such as schools or disadvantaged 
neighborhoods. As a matter of fact, a few on-going 
geofencing and dynamic emission control projects are 
applying such a strategy to reduce emission in disadvantaged 
communities [29].  
   Future directions for this research include use of real-time 
traffic and population activities data, refinement to emission 
modeling, and dynamic routing implementation. Specific 
improvements are as follows: 
(1) In the case study, population activities are static estimates 
in year 2010. Also, traffic and weather parameters are 
obtained from historical databases. In the era of Big Data, it 
would be possible to realize the collection of these various 
datasets in real time, and more population groups, such as 
workers, commuters’ exposure can be accounted for.  
(2) In the current work, pollutant emissions are modeled at the 
mesoscale based on link average speed. In the future, 
microscopic traffic simulation and/or probe vehicles can be 
used to better represent the modal operation (acceleration, 
deceleration, cruising, and idling) of vehicles on the roads. In 
addition, road grade and vehicle weight data can also be 
incorporated in conducting microscale, power-based emission 
modeling to improve the accuracy of emission estimates and 
subsequent pollutant exposure assessment. 
(3) Fuel consumption, carbon dioxide emissions, and 
economic impacts should also be evaluated.  
(4) More efficient algorithms for routing such as the A* 
algorithm can be applied to make the low pollutant exposure 
navigation more practical. More options of solving optimal 
paths could be further explored.  
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