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Consideration of exposure to traffic-related air pollution in bicycle 
route planning 

Ji Luo *, Kanok Boriboonsomsin, Matthew Barth 
College of Engineering - Center for Environmental Research and Technology, University of California, Riverside, 1084 Columbia Ave, Riverside, CA, 
92507, USA  

A B S T R A C T   

Introduction: Active transportation modes such as bicycling are key elements of sustainable transportation. In order to promote bicycling as an 
alternative form of transportation, a holistic approach to improving the quality of the biking experience is needed. The planning of bicycle routes 
typically takes into consideration available right-of-way, existing roadway infrastructure, and safety concerns, among other factors. Exposure to 
traffic-related air pollution, on the other hand, is rarely considered despite bicyclists being vulnerable to the harmful air pollution due to their direct 
exposure to vehicular exhaust and increased breathing rate during biking. 
Methods: This paper presents a method for incorporating exposure to traffic-related air pollution as another consideration in the bicycle route 
planning process. The method first applies a streamlined process for estimating the level of near-road air pollution concentration. Then a bicycle 
route planning tool is developed which allows planners and engineers to compare the exposure of bicyclists to traffic-related air pollution among 
different bicycle route options. Additionally, this paper demonstrates how to apply the method in two case studies in the City of Riverside, 
California. 
Results: Through the case studies, it is shown that considering exposure to traffic-related air pollution can change the results of bicycle route 
planning. 
Conclusions: The presented case studies illustrate how the consideration of exposure to traffic-related air pollution could impact the results of bicycle 
route planning. Planners may refer to the presented method or use the information in the analysis differently based on their needs in specific 
projects. Planners and stakeholders may jointly determine how important the different factors, including exposure to traffic-related air pollution, are 
in relation to one another and what tradeoff between different factors will be.   

1. Introduction 

Many local, regional, and state agencies in the United States are making efforts to increase bicycle infrastructure in order to 
promote sustainable and multi-modal transportation. Typically, the planning of bicycle routes considers multiple factors including 
available right-of-way, vehicle traffic volume, safety, and the built environment (Guide for the Deve, 2012). While bicyclists are most 
vulnerable to the harmful air pollution due to their direct exposure to vehicular exhaust and increased breathing rate during biking 
(Weichenthal et al., 2012; Thai et al., 2008), this factor is rarely considered in bicycle route planning. 

Research studies have been conducted to investigate the issue of bicyclists’ exposure to traffic-related air pollution. One area of 
research is measuring air pollutant concentrations in the microenvironment of different transportation modes such as driving, walking, 
and bicycling (van Wijnen et al., 1995; Karanasiou et al., 2014; Ragettli et al., 2013). Some studies went a step further by attempting to 
quantify the intake of air pollutants. For example, Quiros et al. used a portable instrument to measure ultrafine particle (UFP) con-
centration and calculated UFP inhalation of drivers, cyclists, and pedestrians. The results indicate that respiratory UFP exposure 

* Corresponding author. 
E-mail addresses: ji.luo@ucr.edu (J. Luo), kanok@cert.ucr.edu (K. Boriboonsomsin), barth@ece.ucr.edu (M. Barth).  

Contents lists available at ScienceDirect 

Journal of Transport & Health 

journal homepage: http://www.elsevier.com/locate/jth 

https://doi.org/10.1016/j.jth.2019.100792 
Received 12 June 2019; Received in revised form 15 October 2019; Accepted 10 November 2019   

mailto:ji.luo@ucr.edu
mailto:kanok@cert.ucr.edu
mailto:barth@ece.ucr.edu
www.sciencedirect.com/science/journal/22141405
https://http://www.elsevier.com/locate/jth
https://doi.org/10.1016/j.jth.2019.100792
https://doi.org/10.1016/j.jth.2019.100792
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jth.2019.100792&domain=pdf
https://doi.org/10.1016/j.jth.2019.100792


Journal of Transport & Health 16 (2020) 100792

2

(number of particles inhaled per trip) was 15 times higher when cycling and 30 times higher when walking, as compared with driving 
with windows closed (Quiros et al., 2013). 

Another focus is on assessing the health effects for travelers in various traffic microenvironment as well as measuring marker 
pollutants’ concentration (McCreanor et al., 2007; Jarjour et al., 2013; Weichenthal et al., 2014). For instance, Weichenthal et al. 
conducted a cross-over study among 53 healthy non-smoking women who were exposed to traffic air pollutants for 2 hours on three 
separate occasions: cycling on high-traffic routes, low-traffic routes, and indoor. It was observed that indices of microvascular function 
and blood pressure were slightly negatively impacted with each interquartile increase of UFP exposure (Weichenthal et al., 2014). 

The third research area not only involves the measurement but also considers explaining and predicting travelers’ exposure to 
traffic-related air pollution (Hatzopoulou et al., 2013a; Bigazzi and Figliozzi, 2015). For example, Bigazzi et al. estimated the effects of 
roadway and travel variables on bicyclist exposure concentrations, controlling for meteorology and background conditions (Bigazzi 
and Figliozzi, 2015). Building on the measurement and prediction studies, several research groups have aimed to develop and 
characterize mitigation strategies (Hertel et al., 2008; Kendrick et al., 2014; Pattinson et al., 2017). For example, Hatzopoulou et al. 
(2013) developed a web-based route planning tool for individual bicyclists to reduce their exposure to ambient nitrogen dioxide 
(Hatzopoulou et al., 2013b). 

Albeit a large body of literature in these research areas, to the best of our knowledge there has not been a research study that 
explicitly considers bicyclists’ exposure to traffic-related air pollution in the planning of bicycle routes. We attempt to fill this gap by 
developing a method to incorporate reduced exposure to traffic-related air pollution as another consideration in the bicycle route 
planning process in order to improve the quality of the biking experience and promote active transportation. Specific objectives of this 
research include: 1) creating a streamlined process for estimating the level of near-road air pollution concentration; 2) developing a 
bicycle facility planning tool that allows planners and engineers to compare the exposure of bicyclists to traffic-related air pollution 
among different bicycle routes; and 3) demonstrating the method in two case studies. 

2. Modeling street-level air pollutant concentration 

Current air quality measurement data are not available at the spatial resolution necessary for the planning of bicycle facilities. In 
this research, high-resolution traffic-related air pollution concentrations are estimated through a streamlined modeling process. The 
air pollution concentration estimation process involves multiple steps, datasets, and modeling tools, as shown in Fig. 1. First, a digital 
map of roadway network was used as the input for a traffic model to estimate traffic activity, in terms of flow and speed, on each 
roadway link in the network. Then, the estimated traffic flow and speed were used in conjunction with an emission model to estimate 
the corresponding traffic emissions on each roadway link. Finally, these emission estimates are input into a dispersion model to es-
timate air pollution concentration at receptor locations. This modeling chain has been applied by several research groups using a 

Fig. 1. Traffic-related air pollution modeling process.  

Fig. 2. Total flow (vehicles per hour) in the morning period.  
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variety of model combinations (Amirjamshidi et al., 2013; Rowangould, 2015; Vallamsundar et al., 2016). The following sections 
describe the models and datasets applied in this study in detail. 

2.1. Traffic activity and emissions modeling 

Traffic activity data in year 2017 in Riverside City is based on the Regional Travel Demand Model (RTDM) (Regional Travel Dema, 
2016). The data is available for four periods: morning (6–9 a.m.), midday (9 a.m.-3 p.m.), afternoon (3–7 p.m.), and nighttime (7 p. 
m.-6 a.m.). Traffic flow data includes separate values for four vehicle categories: 1) light duty automobile 2) light-heavy duty trucks; 3) 
medium-heavy duty trucks; and 4) heavy-heavy duty trucks. Total flow is the summation of the flow values and is shown in Fig. 2. 
Additionally, one traffic speed value represent the speed for all vehicle types on that link. 

To estimate traffic emissions, emission factors were obtained from the California Air Resources Board’s EMFAC model version 2014 
for the fleet composition in Riverside County in calendar year 2017 (California Air Resource Board, 2014). EMFAC is the regulatory 
emission model for California. As an example, fine particle (PM2.5) emission factors for speed from 5 mph to 70 mph were obtained for 
multiple vehicle categories in EMFAC 2014, which were then matched with vehicle types in RTDM. After that, the total PM2.5 emission 
on each roadway link was calculated as: 

Ei ¼
X

j
qi;j � eðviÞ

j

8 i ¼ ​ 1; � 2; � 3; � � �;&; 743 (1)  

where Ei is total emission on roadway link i (grams); qi,j is flow of vehicle type j on roadway link i (vehicles per hour); and e (vi)j is 
emission factor of vehicle type j for the speed on roadway link i (grams per mile). 

2.2. Air pollutant concentration modeling 

R-LINE, a research-grade air dispersion model for near-roadway assessments developed by the U.S. Environmental Protection 
Agency (EPA), is used in this study (University of North Carolina at Chapel Hill, 2019; Snyder and David, 2013). The underlying 
relationship between air pollutant concentration and the line sources in R-LINE can be expressed as: 

Cðx; y; zÞ¼ fðQ; source location; meterology Þ (2)  

where C(x,y,z) denotes emission concentration at a receptor location; and Q is average emission rate of on-road vehicles (grams/ 
meter/second) obtained from traffic emission modeling in the previous step. For source location, each line segment’s nodes co-
ordinates are required. Typical meteorological data for R-LINE, such as air temperature, wind speed, surface friction velocity, Monin- 
Obukhov length, etc., are available from the South Coast Air Quality Management District (SCAQMD) website (South Coast Air Quality 
Management District, 2019). 

In order to estimate high-resolution PM2.5 concentration at the street level, receptors were set up as a 100 m � 100 m gridded 
network at the height of 1.5 m. This yielded 48,000 receptors in the modeling area, and more than 8000 roadway links. In an effort to 
keep the computation time reasonable while still capturing concentration distribution due to meteorological variation, we examined 
the meteorological variation across multiple years. The data of meteorological parameters are readily available from year 2008–2012 
(South Coast Air Quality Management District, 2019). The analysis of these data for the five years revealed that the trends in weather 
patterns are comparable across the years. For example, our analysis showed that several critical parameters (e.g. sensible heat flux, 
temperature, surface friction velocity, etc.) for each time period and month from year 2009–2012 are similar across the years. Hence, 
we used the meteorological data of year 2012 to represent the weather condition in the model year, which is 2017. The meteorology 
station is managed by SCAQMD and is located near Mt. Rubidoux in Riverside (South Coast Air Quality Management District, 2019). 

We considered a total of 36 hourly average meteorological conditions consisting of three time periods of day (morning, midday, and 
afternoon) for the 12 months in calendar year 2012. The 36 sets of estimated PM2.5 concentration values were then weighted by the 
level of bicycle activities by time period of day and by month of year derived from the GPS dataset in the 2010-12 California Household 
Travel Survey. This resulted in a weighted average PM2.5 concentration map for the city. 

The reason for using the weighting method is that bicycle facilities, once planned and built, are not likely to be easily moved. For 
example, if more bicycle trips occur in the morning hours than during midday, a larger weight was given to the concentration values for 
the morning period than those for midday. Therefore, it is reasonable to weight the PM2.5 concentration values for the different time 
scenarios based on the level of bicycle activities during each time scenario to result in one set of reference PM2.5 concentration values 
for the purpose of planning future bicycle facilities. 

2.3. Weighting air pollution concentration based on bicycling activities 

To acquire bicycle activity data by hour of day and by month for the City of Riverside, we reviewed several travel surveys and 
datasets associated with bicycle use (National Household Travel, 2009; SCAG, 2010; National Renewable Energy Laboratory, 2010). 
We found that the GPS dataset from the California Household Travel Survey has a more balanced sample in terms of sociodemographic 
characteristics, and its data availability is more consistent. Data from the entire State of California were used because there are not 
enough bicycle trip counts within the boundary of the city. A survey of cyclists’ activity in the local area should be included when 
implementing such projects. Fig. 3 maps hourly averaged bicycle trip counts by period of day and by month. It shows that the number 
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Fig. 3. Hourly averaged bicycle trip counts by period of day and by month for California State.  

Fig. 4. a) Weighted PM2.5 concentration based on bicycling activities in the State of California 
b) Traffic-related primary PM2.5 exposure per mile for bicyclists. 
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of hourly averaged bicycle trips varies significantly by month rather than by time period. 
Based on Fig. 3, we used the hourly averaged bicycle trip counts (36 data points) as weight factors for the 36 p.m.2.5 concentration 

maps generated earlier. The concentration vector for each time period of each month can be expressed as: 

Cijk ¼

2

6
4

c 1jk
c2jk…

c48000;j;k

3

7
5 (3)  

where i is index for receptor (from 1 to 48,000); j is index for month (from 1 to 12); and k is index for time period (from 1 to 3, 
representing morning, midday and afternoon, respectively). The final concentration vector, C, can be calculated by Equation (4): 

C¼
P

jk

�
Cijk � countjk

�

P
jkcountjk

(4)  

where countjk denotes bicycle trip counts in month j and time period k as in Fig. 3. After weighting based on the level of bicycle ac-
tivities, the final concentration map was generated as shown in Fig. 4a. 

3. Generating air pollution exposure map for bicycle facility planning 

Using the final PM2.5 concentration map (Fig. 4a), a bicyclist’s exposure to traffic-related air pollution on each roadway link in the 
City of Riverside can be estimated. The exposure scenario in this study is a bicyclist’s direct exposure to vehicular PM2.5 in a near-road 
outdoor microenvironment. We use inhaled mass as a metric for quantifying the level of exposure. It is a function of air pollutant 
concentration that the bicyclist is exposed to, duration of the exposure, and breathing rate of the bicyclist during the time of exposure. 
In this study, PM2.5 concentration was estimated for each roadway link. Therefore, inhaled mass of PM2.5 for bicyclist k traveling on 
roadway link i can be expressed as in Equation (5), assuming that the breathing rate of the bicyclist remains the same throughout the 
roadway link. 

IMi;k ¼ ci � ti;k �BRi;k (5)  

where IM is inhaled mass of PM2.5 (μg); c is PM2.5 concentration (μg/m3) along the roadway link; t is travel duration (minutes); and BR is 
breathing rate of the bicyclist (m3/minute). c is calculated by first extracting the locations of vertices on each link and then determining 
the PM2.5 concentration at each location from the concentration map. Each link has at least 3 vertices (i.e., start point, midpoint, and 
end point), and c is calculated as the average of the concentration values at all the vertices. The bicycling duration on a roadway link 
was calculated based on the link length (meters), and the assumed speed of an average bicyclist of 9 miles per hour (National 
Renewable Energy Laboratory, 2010). The breathing rate of an average bicyclist is assumed to be 0.04 m3/minute based on health 
studies (Chapter 6 and Exposure Facto, 2011; Bigazzi and Figliozzi, 2014). 

Fig. 4b shows the level of exposure to PM2.5 for an average bicyclist on a link-by-link basis, where the inhaled mass values are 
normalized by link length. The color map is categorized by five quantiles based on the normalized exposure values and the number of 
links. As expected, the map shows that most of the links in the top 20% bracket (red color) are in close proximity to the two major 
freeways passing through the city - State Route 91 (SR-91) and State Route 60 (SR-60). The exposure information can be used in 
conjunction with other information pertinent to safety, connectivity, accessibility, and other metrics in the planning of new bicycle 
paths and lanes. 

Fig. 5. Alternative bicycle routes between UC Riverside and Downtown Riverside.  
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Table 1 
Attributes, weight of importance (wi) and ranks of alternative bicycle route segments between UC riverside and downtown riverside.  

Attributes wi Third St Mission Inn Ave University Ave 

Value Rank Value Rank Value Rank 

Connection to land uses 10 Mix of residential and 
industry, few people on 
street 

3 Mix of residential and 
businesses, many people on 
street 

1 Mostly businesses, 
moderate number of people 
on street 

2 

Posted speed limit (mph) 9 30 2 25 1 35 3 
Total number of lanes 8 3 2 2 3 4 1 
Road shoulder width (ft) 7 5 2 5 2 5 2 
Estimated average daily traffic 

volume in year 2017 
(vehicles/ln/day) 

6 5577 1.5 9455 3 5628 1.5 

Terrain and road grade 5 Generally level 1.5 Generally level 1.5 Uphill and downhill around 
SR-91 bridge 

3 

Roadside parking allowed? 4 Most sections do not allow 
parking 

1.5 Most sections allow parking 3 Most sections do not allow 
parking 

1.5 

Barriers 3 Train tracks 2.5 Train tracks 2.5 None 1 
Number of intersections along the 

segment 
2 8 2.5 8 2.5 6 1 

Total PM2.5 exposure (μg) 1 0.09 1 0.11 2 0.14 3 
Simple average rank 1.95 2.15 1.90 
Weighted average rank 2.07 1.98 1.95  

Fig. 6. a) Simple average rank and b) weighted average rank of the alternative route segments between UCR and downtown Riverside.  
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To develop an online tool for future bicycle facility planning, we have integrated several useful map layers and published them 
online at http://arcg.is/29CESgp. Users can select roadway links whose attributes match specified criteria to facilitate decision-making 
process. 

4. Case studies of considering traffic-related air pollution exposure in bicycle ROUTE planning 

4.1. University of California (UC) riverside to Downtown Riverside corridor 

This corridor connects the two major trip origins/destinations in the city with potential for high bicycle mode share. Fig. 5 shows 
the map of the corridor. Since there are already bicycle facilities along this corridor, notably on part of University Ave, Linden Street, 
and Third St, we conducted a comparison of a short segment on each route, illustrated by the three pairs of dots in Fig. 5. 

Table 1 lists key attributes that should be considered when planning bicycle routes (Guide for the Deve, 2012) and their weight of 
importance in this case study based on local input. The weight is from 1 to 10 with a higher weight representing a higher level of 
importance. The attribute values of each route segment were collected through a combination of the regional transportation model, 
street images, and site visits. Based on the attributes, the rank values were determined. While it is desirable that the attributes 
considered are quantitative, it is not always possible. Some of the attributes considered in this case study are qualitative. Therefore, 
when comparing the attribute values among the three alternatives, it is appropriate to use an ordinal scale or rank order (1st, 2nd, 3rd, 
…). The ordinal scale can be easily understood therefore making it straightforward to communicate with the general public about the 
process. In ‘Rank’ column of Table 1, value ‘1’ means highest rank (i.e., the most preferred alternative). In some cases, two or more 
alternatives have the same rank meaning that they are equally preferred. As an example, for the posted speed limit, Mission Inn Ave is 
ranked 1 as it has the lowest posted speed limit (25 mph) while University Ave is ranked 3 as it has the highest posted speed limit (35 
mph). As another example, in the case of terrain and road grade, both 3rd St and Mission Inn Ave are both level in general whereas 
University Ave has uphill and downhill around the SR-91 overpass. In this case, University Ave is ranked 3 and the other two routes 
share the rank of 1.5, which is the average of 1 and 2. 

We calculated two types of average rank: 1) simple average rank, and 2) weighted average rank as: 

Simple average rank¼
1
N

XN

i¼1
ri (6)  

Weighted average rank¼
PN

i¼1ðri �wiÞ
PN

i¼1wi
(7)  

where ri is rank of attribute i; wi is weight of attribute i; and N is number of attributes. 
Fig. 6a shows the simple average rank values of the three alternative route segments with and without the total PM2.5 exposure 

attribute. Based on this figure, University Ave would be the best alternative regardless of whether the exposure to PM2.5 is taken into 
account or not. 

When looking at the weighted average rank shown in Table 1, University Ave would again be the best alternative as it has the lowest 
rank value. This weighted average ranking is based on the weight of importance listed in the table where the total PM2.5 exposure 
attribute is given the least importance (wi ¼ 1). Fig. 6b examines the impact of changing the weight of the PM2.5 exposure attribute. 
Based on this figure, Mission Inn Ave would become the best alternative if the weight of the total PM2.5 exposure attribute is between 2 
and 9. If the weight of the total PM2.5 exposure attribute is 10, then Third St would become the best alternative. Note that there are 
already bike lanes on some segments of Third St, which is included in this case study for comparison purposes only. On the other hand, 

Table 2 
Attributes, weight of importance (wi) and ranks of alternative bicycle route segments around MLK high school.  

Attributes wi Van Buren Blvd Krameria Ave 

Value Rank Value Rank 

Connection to land uses 10 Mostly businesses 1.5 Mostly residential 1.5 
Posted speed limit (mph) 9 50 2 25 1 
Total number of lanes 8 4 1 1–2 2 
Road shoulder width (ft) 7 3–5 1.5 2–5 1.5 
Estimated average daily traffic volume in year 2017 (vehicles/ 

lane/day) 
6 7689 2 1578 1 

Terrain and road grade 5 Moderate road 
grade 

1.5 Moderate road grade 1.5 

Roadside parking allowed? 4 Mostly no 1 Parking is allowed on some of the residential 
sections 

2 

Barriers 3 None 1.5 None 1.5 
Number of intersections along the segment 2 11 1 12 2 
Total PM2.5 exposure (μg) 1 0.2 2 0.07 1 
Simple average rank 1.50 1.50 
Weighted average rank 1.52 1.48  

J. Luo et al.                                                                                                                                                                                                             
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there are no existing bike lanes on either University Ave or Mission Inn Ave, and the two streets are a block away from each other. Both 
streets connect to the major area of the city, and either of them would be a suitable candidate for adding bike lanes. The results in 
Fig. 6b indicate that the choice between the two streets could depends on whether exposure to traffic-related air pollution is taken into 
consideration and how important this factor is relative to other factors. 

4.2. Van Buren Blvd corridor 

In this case study, we chose a segment of Van Buren Blvd around Martin Luther King (MLK) High School. There are many schools 

Fig. 7. Alternative bicycle routes along Van Buren corridor around MLK High School.  

Fig. 8. a) Simple average rank and b) weighted average rank of the alternative route segments on Van Buren Blvd corridor near MLK High School.  
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and residential communities located near the segment. Also, this area has steep road grade, and high roadway intersection density, 
making it a representative case study. 

There are already bike lanes on Van Buren Blvd east of MLK High School. There is a plan to extend these bike lanes westward to the 
intersection with Washington St, as represented by the two red dots. An alternative is a parallel segment on Krameria Ave south of Van 
Buren Blvd, as marked by the pair of black dots. The black dot on the east end is about 2000 ft south of the red dot on the east, while the 
black dot on the west end is about 1000 ft south of the red dot on the west end. As in the previous case study, the attribute values of 
each route segment were gathered from the regional transportation model, street images, and site visits. They are summarized in 
Table 2. 

Next, the simple averaged rank and weighted average rank were calculated based on Equation (6) and (7), respectively. Fig. 8a shows 
that without considering the exposure to PM2.5, Van Buren Blvd would be a better alternative. But when taking such exposure into 
account, both route segments would be equally appropriate. This is not surprising because the total PM2.5 exposure on Van Buren Blvd 
is higher than that on Krameria Ave. 

According to the weighted average rank in Table 2, Krameria Ave would be a better alternative by a slight margin when the total 
PM2.5 exposure attribute is the least important factor (weight ¼ 1). According to Fig. 8b, Krameria Ave would be the better alternative 
no matter how much weight is given to the PM2.5 exposure attribute, as long as it is taken into consideration. The higher the weight is, 
the bigger the margin between Krameria Ave and Van Buren Blvd because Krameria Ave has a lower exposure value than Van Buren 
Blvd. 

Note that when looking at the two alternative route segments in Fig. 7 from the bicycle facility network perspective, they do not 
directly compete with each other. Van Buren Blvd would be a good option for expanding the bicycle facility network in the city as it is a 
major arterial with many businesses along the road. Bicyclists who want to access the amenities on Van Buren Blvd or want to travel to 
destinations west of the end of the existing bike lanes could benefit from extended bike lanes on this route. On the other hand, there are 
many schools south of Van Buren Blvd. For children attending these schools, Krameria Ave would be a safer and lower air-pollution- 
exposure route for them to bike to school. Adding bike lanes on this route could potentially encourage residents, especially school-aged 
children and their parents, to ride bicycles more (Dill and Carr, 2003). Thus, in this case study, adding bike lanes on both routes would 
be ideal where the bike lanes on each route would serve different types of users making different types of trips. 

5. Conclusions and future directions 

The planning of bicycle routes typically takes many factors into account, including available right-of-way, existing roadway 
infrastructure, vehicular traffic volume, safety concerns, and built environment, among others. Exposure to traffic-related air pollu-
tion, on the other hand, is rarely considered despite bicyclists being vulnerable to the harmful air pollution due to their direct exposure 
to vehicular exhaust and increased breathing rate during biking. This paper presents a method for incorporating exposure to traffic- 
related air pollution as another consideration in the bicycle route planning process. In addition, it demonstrates how to apply the 
method through two case studies. 

The presented case studies illustrate how the consideration of exposure to traffic-related air pollution could impact the results of 
bicycle route planning. Planners may refer to the presented method or use it differently based on their needs in specific projects. For 
example, model parameters related to bicyclist characteristics (e.g., average biking speed, breathing rate, and receptor height) can be 
adjusted towards children-specific values when planning bicycle routes that will be used by many children, such as near schools and in 
residential neighborhoods. This is important because children are especially susceptible to traffic-related air pollution in terms of 
physical health and cognitive development (Bayer-Oglesby et al., 2005; Jerrett et al., 2014; Sunyer et al., 2015). As another example, 
both the order and the weight of importance for the different factors can be adjusted, which may affect the ranking results. Planners 
and stakeholders may jointly determine how important the different factors, including exposure to traffic-related air pollution, are in 
relation to one another and what tradeoff between different factors will be. It should be noted that the examples in the two case studies 
do not necessarily include all factors that may be considered. In other areas or cities, there may be additional factors that should also be 
taken into consideration in the planning of bicycle routes. 

Several aspects of this research can be improved and expanded in the future. For instance, traffic activity data could be enhanced 
with more spatial and temporal details such as wait time at crossings and intersections. Air pollutant concentration modeling could 
consider the in-plume/near-plume effects near tailpipes, and include other major sources of air pollutant emissions such as industrial 
sources. In the future, if air quality measurement data become available at the necessary spatial resolution, they can be used to validate 
the modeling results used in the bicycle facility planning process directly in lieu of the estimated values. Additionally, other weighting 
methods can be used in the ranking of bicycle routes to take advantage of the quantitative attributes that are included in the 
consideration. 
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