

A Brief Overview of Ground-level Ozone Pollution William C. Porter · March 23, 2018

Ozone (O₃) in the atmosphere

90% of the Earth's O3 is located in the stratosphere

Why the stratosphere?

Relatively abundant O₂, few sinks (hopefully)

Stratospheric O₃ represents an important UV shield for life on Earth

But what about O₃ at the surface?

Tropospheric O₃ is an EPA criteria pollutant with known links to respiratory and cardiovascular disease

High O₃ levels can also damage plants and crop productivity

O₃ pollution is typically a summertime problem with clear regional differences

95th Percentile O₃ levels (1998-2013)

Where does tropospheric O₃ come from, and where does it go?

Tropospheric O₃: global sources and sinks

Jacob, 1999

Ozone (O₃) participates in a catalytic cycle involving O₂ and NO_x

Oxidized VOCs compete for NO, replenishing NO₂ and elevating O₃ concentrations

A simple engine metaphor

Tropospheric O₃: global sources and sinks

Jacob, 1999

Modeled O₃ mixing ratio (ppb) vs. VOC and NO_x emissions

Monks et al., 2015

$NOx = NO + NO_2$

Sources

Dominant Sink: Oxidation to HNO₃

Lifetime is relatively short — around one day

NO_x "reservoir species" can lead to longer-range transport

PAN

Forms from reaction with VOC oxidation products and NO₂

Lifetime can range from hours to months, depending on temperature

Effective transport mechanism for NO_x in middle/upper troposphere

Non-methane VOCs

Typical urban O₃/precursor diurnal cycle

Wallace and Hobbs, 2006

The role of atmospheric dynamics

Daily O₃ has a known positive correlation with daily temperature

Bloomer et al., 2009

Higher temperatures → more isoprene

Higher temperature \rightarrow more soil NO_x

Higher temperature → shorter PAN lifetime

Table 7. Temperature and corresponding lifetime k^{-1} of PAN	
Temperature (°C)	k ⁻¹ (h)
-15	660.7
10	247.7
-5	96.3
0	38.8
5	16.1
10	6.9
15	3.1
20	1.4
25	0.65

Wunderli & Gehrig, 1991

Stratospheric intrusions can pull O₃ down to surface, especially at higher elevations

Lin et al., 2012

O₃ lifetime is sufficient for long-range transport under certain conditions

OMI tropospheric NO₂ column 2005–2006 50° N 50° N 40° N Latitude 40° N 30° N Latitude 20° N 30° N 10° N 20° N 100° E 140° E 180° 140° W 100° W 10° N OMI tropospheric NO₂ column 2009–2010 50° N 40° N Latitude 30° N 20° N 10° N 50° N 100° E 140° E 180° 140° W 100° W 40° N Latitude Longitude 30° N 2 4 6 8 10 NO_2 column density (10¹⁵ molecules cm⁻²) 20° N

50° N 40° N 30° N 20° N 10° N 10° E 140° E 180° 140° W 100° W Longitude

TES partial O₃ column (3-9 km) 2005-2006

Verstraeten et al., 2015

Overall trend at most polluted regions has been moving in the right direction

US EPA REGION 9 AIR QUALITY TRENDS, 1976-2012 8-HOUR OZONE (O₃) DESIGN VALUE CONCENTRATIONS BY NONATTAINMENT AREA

Observed trends show significant improvements in the reduction of extreme summertime values (1998-2013)

Future improvements will depend on comprehensive and region-specific understanding of local drivers

