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Background and Motivation

e Splash Blend versus Match Blend

 Role of Octane
— Spark timing advance

— May affect chemical residence time for
combustion reactions

— May affect combustion efficiency, emissions
 How well do vehicles adapt to fuel blends

— Flex Fuel Vehicles — ethanol sensor
— Non-FFVs: Long-term fuel trim




Objective

Evaluate the effect of gasoline ethanol blends
on real-world fuel use and emission rates




Study Design

e Fuels

e Vehicles
 Routes

e |Instruments
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Fuels

 EO (neat gasoline)

« E10R (10% ethanol by volume) Regular
« E10P Premium

o E25 (splash blended with E10R)




Fuel Sampling and Blending
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Selected Fuel Properties

Heating Composition | Distillation
Fuel | Value | 5 | aromatics | Teo | Tog | PMIAKI
(BTU/Gal) | wioe)|  (wt%) | (°F) | C°F)
E0 | 115,700 | 0.0 41 226 | 322 | 1.9 | 90
E1I0R 110,000 & 4.1 28 155 | 321 | 1.7 | 88
E10P | 110,800 | 3.8 39 198 | 316 | 1.7 | 93
E25 | 103,700 | 10.5 22 163 | 307 | 1.4 | 92
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Measured Vehicles

1 2017
Chevrolet

Cruze
“GDITC
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Test Routes in Raleigh

Research Triangle Park

ART = Arterial
FWY = Freeway

0O 25 5 10 km
[ |
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Portable Emission Measurement Systems
(PEMS)
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Results

e Driving Cycles
 Engine Performance
— Ignition Timing Advance
— Long-Term Fuel Trim
* Fuel Use and Emission Rates
— VSP (Vehicle Specific Power) Modal Analysis
— Cycle-Average Analysis
— Statistical Significance
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Driving Cycles: Route 1 (Inbound)

Example: 2018 Toyota Camry, Route 1-inbound
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Ignition Timing Advance vs. Calculated Load:
2017 Chevrolet Cruze
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Note: Error bars are 95% confidence intervals based on mean ignition timing advance for
each engine calculated load bin for the Cruze.
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Long-Term Fuel Trim (LTFT)
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Average LTFT (%)

Equinox Cruze Camry Quest Focus

Note: Error bars are 95% confidence intervals based on average LTFT for each vehicle/fuel
measurement.
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Vehicle Specific Power (VSP)

VSP =v{a(l+ &)+ gr+gC, |+ %,ov3 Cr?]A

Where

= vehicle acceleration (m/s?)

= vehicle frontal area (m?)

= aerodynamic drag coefficient (dimensionless)
= rolling resistance coefficient (dimensionless, ~ 0.0135)
acceleration of gravity (9.8 m/s?)

vehicle mass (in metric tons)

= road grade

= vehicle speed (m/s)

= Vehicle Specific Power (kw/ton)

= factor accounting for rotational masses (~ 0.1)
= ambient air density (1.207 kg/m? at 20 °C)
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Vehicle Specific Power Modes

VSP mode Definition (kW/ton)

Deceleration> 1 VSP < -2

or Downhill 2 -2<VSP <0

Idle > 3 0<VSP<1
4 1<VSP<4
5 4<VSP<7
6 /<VSP <10
4 10 = VSP < 13

Cruising, 8 13=<VSP <16

Acceleration, 9 16 <VSP <19

or Uphill 10 19 < VSP < 23
11 23 <VSP <28
12 28 < VSP < 33
13 33 <VSP <39
14 VSP Over 39
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VSP Modal Average Fuel Use Rate By Fuel
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Note: Error bars are 95% confidence intervals based on mean fuel use rates for 5 vehicles
for each VSP mode. 17
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Cycle Average Fuel Economy
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for 5 vehicles for each driving cycle.
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Driving Cycle

Note: Error bars are 95% confidence intervals based on mean cycle-average fuel economy
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Cycle Average Energy Efficiency
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Note: Error bars are 95% confidence intervals based on mean cycle-average energy
efficiency for 5 vehicles for each driving cycle.
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Cycle Average CO Emission Rates

1,800
E0O OE10R mE10P &E25

1,500

—

N

o

o
1

CO (mg/mile)
o ©
o o
o o

W

o

o
1

0 1 —L 1 —L - 1 —L 1 —- 1 1 :

A C 1 3 FTP HFET US06 SCO03
Driving Cycle

Note: Error bars are 95% confidence intervals (Cls) based on mean cycle-average CO emission

rates for 5 vehicles for each driving cycle, and are estimated using bootstrap resampling
for negative Cls. 20
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Cycle Average PM Emission Rate (Axion)
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Note: Error bars are 95% confidence intervals (Cls) based on mean cycle-average PM emission

rates for 5 vehicles for each driving cycle, and are estimated using bootstrap resampling
for negative Cls. 21
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Cycle Average Scattering PM Index (ParSYNC)
3.5 -
E0 OE10R BE10P &E25
3.0 -
X
. 2.5 -
o
— 2.0 -
=
015 -
8 -
S 1.0 - 1
o< 1 0 U U e s O
0.0 : — k\ll — hln k\l — r\ln
A C 1 3 FTP HFET US06 SCO03
Driving Cycle
Note: Error bars are 95% confidence intervals (Cls) based on mean cycle-average PM1 index for
5 vehicles for each driving cycle, and are estimated using bootstrap resampling for

negative Cls. 22



Cycle Average lonization PM Index (ParSYNC)
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Note: Error bars are 95% confidence intervals (Cls) based on mean cycle-average PM2 index for
5 vehicles for each driving cycle, and are estimated using bootstrap resampling for

negative Cls. 23
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Cycle Average Opacity PM Index (ParSYNC)
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Note: Error bars are 95% confidence intervals (Cls) based on mean cycle-average PM3 index for
5 vehicles for each driving cycle, and are estimated using bootstrap resampling for
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P-values for Paired-t Tests
Cycle Average Fuel Economy

Pairs

Driving Cycles

A

3

FTP

HFET

US06

SCO03

E10R < EO

0.01

0.01

0.00

0.01

0.02

0.00

0.01

0.02

E10P > E10R

0.21

0.19

0.13

0.14

0.29

0.23

0.10

0.26

E25 <E10R

0.11

0.14

0.63

0.43

0.01

0.13

0.78

0.01

E25 < EO

0.00

0.01

0.04

0.02

0.00

0.00

0.07

0.00

E25 < E10P

0.03

0.02

0.01

0.01

0.07

0.04

0.02

0.05

E10P < EO

0.62

0.63

0.63

0.62

0.68

0.60

0.62

0.68
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P-values for Paired-t Tests:
Cycle Average CO, Emission Rates

Pairs

Driving Cycles

3

FTP

HFET

US06

SCO3

E10R < EO

0.49

0.49

0.85

0.74

0.40

0.42

0.77

0.41

E10P < E10R

0.89

0.81

0.40

0.53

0.89

0.88

0.30

0.95

E25 <E10R

0.17

0.13

0.14

0.14

0.27

0.07

0.17

0.20

E25 < EO

0.05

0.05

0.09

0.07

0.06

0.03

0.11

0.05

E25 <E10P

0.44

0.37

0.15

0.13

0.64

0.27

0.22

0.59

E10P < EO

0.59

0.53

0.35

0.36

0.76

0.66

0.35

0.70

26



NC STATE UNIVERSITY

P-values for Paired-t Tests:
Cycle Average CO Emission Rates

Pairs

Driving Cycles

3

FTP

HFET

US06

SCO03

EO < E10R

0.50

0.41

0.20

0.23

0.85

0.71

0.18

0.69

E10R < E10P

0.54

0.67

0.69

0.84

0.37

0.28

0.59

0.47

E25 < E10R

0.10

0.04

0.09

0.05

0.54

0.28

0.12

0.31

E25 < EO

0.50

0.39

0.22

0.31

0.51

0.33

0.20

0.49

E25 < E10P

0.29

0.28

0.21

0.25

0.37

0.21

0.23

0.36

EO < E10P

0.52

0.54

0.72

0.60

0.55

0.41

0.95

0.56
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Findings

o E25, splash-blended from E10R, had

— low aromatic content

— low PM index

— Low Ty,

— Lower T, except for E10R

— Higher AKI octane except for E10P

e EO and E10P had similar aromatic content

 PM indices were relatively high for EO,
E10R, and E10P
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Findings

e Able to obtain similar (although not identical)
driving cycles when running real-world routes

 |Ignition timing advance for the Cruze appeared to
De sensitive to octane.

 |gnition timing advance for other vehicles did not
change much among the fuels

e FFV was able to detect ethanol content

 Non-FFVs adjusted long-term fuel-trim during the
conditioning trip
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Findings

 There were few statistically significant
differences between fuels:
— Fuel Economy: EO highest, E25 lowest

— Energy economy: was slightly better for E25
and E10P versus EO and E10R

— CO, emissions were lower for E25 vs. EO

— CO, PM, PM Index 1 (scattering), PM2 Index 2
(lonization) tends to be lower for E25 than
other fuels, but not significantly

— No significant differences for NO, HC
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Conclusions

e Results imply sensitivity to:
— Ethanol content (e.qg., potentially lower CO)

— Aromatic content (e.g., the fuel with lowest aromatic
content tends to have lower PM emission rates)

— Octane rating (e.g., effect on spark timing advance for
one of the vehicles)
 Non-FFVs easily adapted to E25 based on
change in long term fuel trim
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Conclusions

 The scattering, ionization, and opacity indices of

the ParSYNC appear to provide complementary
Information

* Merits further investigation (e.g., also see talks
byTrevits, Ropkins)

e Larger vehicle sample needed to obtain

statistically significant comparisons between fuels
for some of the emission rates
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Vehicle Characteristics

Engine 4
Vehicle ?Odg ff DispI.AS r Iniect Comp.FFV of ?nc]lio).
yp (L) (ASPIINIECH patio spd.| ‘M"
Cyl.
Equinox| SUV | 4 | 2.4 NA | GDI | 11.2 | Y 6 17K
Cruze Sedan 4 1.4 TC | GDI 9.5 N 6 22K
Camry Sedan 4 | 25 | NA | GDI | 13.0 | N 8 7K
Quest |MN-1 g | 35 | NA | PRI | 103 | N | CVT | 46K
Van
Focus Sedan| 4 2.0 NA | GDI | 120 | N 6 37K
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Switching Fuels

o Standard procedure of fuel switching:
1. defuel original fuel
2. add 1 gal new fuel
3. defuel the 1 gal new fuel
4. add new fuel
5

disconnect battery terminals for 1 min then reconnect
(except Equinox FFV)

6. conditioning for new fuel by driving 29 (x1) miles for
~ 40 min (except Equinox FFV)

/. emissions test

8. verify fuel conditioning based on long-term fuel trim
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Drivers

e Drivers:

- One driver per vehicle for all fuels
o Two drivers in total
o Driver #1: Equinox
o Driver #2: Cruze, Camry, Quest, and Focus

- Both drivers were trained on use of cruise
control and waypoints.
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Fuel Conditioning Route in Raleigh

Length: 29 mi

Cruze, Camry, Quest, Focus
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est Conditions

Order of Fuels

Weather Condition

*
Test Vehicle [H(xo)]
Order —
1 5 3 4 Temp. | Humidity
CF) (%)
1 |Equinox| E25 |E10P| EO |E10R| 64(x3) | 80(x14)
2 Cruze |[E10R| E25 |[E10P| EO | 59(%4) | 42(x11)
3 | Camry [EIOR| EO |E10P| E25 | 57(x6) | 53(x12)
4 Quest |[E1IOR| EO [(E10P| E25 | 49(x6) 49(x9)
5 Focus |[E10R| EO |E10P| E25 | 28(x2) 27(x2)

* standard deviation is based on the daily variability for four-day measurement periods for
four fuels.
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Axion PEMS

Portable Emissions Measurement
System (PEMS):

Carbon Dioxide (CO,), CO, and
Hydrocarbons (HC)- NDIR

Nitric Oxide (NO) — electrochemical
PM — laser light scattering

Global Positioning
System (GPS) Recelvers
‘with Barometric Altimeter

& On-board Diagnostic Data
Logger (OBD)




ParSYNC PEMS

 ParSYNC PEMS manufactured
by 3DATX

e PM:
— Light-scattering (PM1 index)
— lonization (PM2 index)
— Opacity (PM3 index)

— Used for relative

comparisons
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Driving Cycles: Route C (Outbound)

Example: 2018 Toyota Camry, Route C-outbound

—EO0 —E10R —E10P -- E25

Distance (mile)
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Ignition Timing Advance vs. Calculated Load:
Camry

Camry:
30 - E0 OE10R mE10P =E25
I

I

25 - I

LLLLLLLA

Ignition Timing Advance
(dig)
(&) ]
27—

8 16 19 24 29 36 45 57 71 89
Calculated Load (%)

Note: Error bars are 95% confidence intervals based on mean ignition timing advance for
each engine calculated load bin for the Camry.
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Example of Fuel Conditioning:
Adjustment in Long Term Fuel Trim

Fuel Conditioning:

Exggnple: Cruze, from E10R (old fuel) to E25 (new fuel)
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