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Research Question

Emissions Testing

ICCT white paper (2015) comparing US and European
Emissions testing and Enforcement
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* no confirmatory testing || * no confirmatory testing | | * check quality system * only some Member States

* no confirmatory testing || * no legal consequences
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Coast-down testing Laboratory testing Conf. of Production
* results not public * “representative” vehicle || * random samples * only for exhaust
(CO,); tested in NEDC CO, allowed 8% higher emissions, not CO,
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* about 2,000 tests

* results public * highest emission vehicle
* 90% production; 5 cycles

REGULATOR REGULATOR * regulator can, early on, | REGULATOR

Coast-down testing | Laboratory testing require testing of In-use surveillance
vehicles pulled straight
« confirmatory testing for from the assembly line || « randomly and targeted

selected vehicles

* periodic confirmatory
testing of in-use vehicles about 15% of vehicles
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Research Question

Corrective Actions

Table ES1. Evaluation of best practices for compliance and enforcement programs in major vehicle markets.

Best Practices

Conduct reliable Prioritize Create a
Establish Avoid Obtain the testing and checks Use GEIEEDLE roadmap
clear legal conflicts necessary at all stages of corrective  information  for program
Region/country authority of interest resources production and use actions transparency development
China @ @ @ o @ ® o
o India [ 2 ® ® @ ® L O
Japan @ @+ @ o @+ @ ®
South Korea o+ o+ @+ o+ @+ @ ]
EU & L ] ® Q @ L ®
France ® ® 8 ® @ [ ] @
Europe
Germany [ X [ ] "] & @ [] ®
UK | @ e @ 0D @ @ o
California @ 9 [ o o o -
North Canada @ @+ o @+ ® ® o
Sl Mexico | @ @ . » @ ® ®
u.s. [ T 9 ® [ I [ T ® 9
South Brazil i L] ® ® ® o o
America ol @ - » @ o @ o

. The country does not sufficiently meet any criteria for this practice.
®+ The country meets some criteria for this practice.

@++ The country meets all criteria for this practice. ( |CCT, 20 17)
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Engineering Low-cost Solutions

ParSYNC® Particle Module

Opacity
Sensor

lonization
Sensor

Scattering
Sensor

aam




Engineering Low-cost Solutions

Response Mapping

The current multiplex function (parSYNC*) attempts to:

* Map the cross/non-cross correlation behavior of
individual sensors onto a reference method robustly

* Correct for the different time resolutions of the
sensors and reference method

Three Sensor Fit
parSYNC* = [REFERENCE] = f(parSYNCl,=_101) +
f(parSYNC2:=_101) +
f(parSYNC3t=_10.1)
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Engineering Low-cost Solutions

Validating Mapping
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Instrument Application

Developing Diagnostics
DPF mode: (-1 engine off;) 1 working; 2 failing; 3 failed
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Scoping Instrument Performance

An Older Dirtier Vehicle

ionization
1
0.8

0.6
0.4
0.2
0

proportion NO, [ppm] proportion NO; [ppm]

Here, measures of fine and coarse PM, e.g. opacity and
ionization, behave similarly but NOT identically, so we
have a strong candidate for response mapping



Scoping Instrument Performance

A Newer ‘Cleaner’ Vehicle

opacity
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0
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Here, levels are lower but also fine PM dominates and
different size ranges behave differently
(also opacity meters can be cross-sensitive to NO,)
So response mapping is more challenging



Exhaust PM [ mg.m°’]

Dynamometer FTP drive cycle
Reference Microsoot

Scoping Instrument Performance

Vehicle Speed [ km.hr']
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Scoping Instrument Performance
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Exhaust PM [ mg.m°]

Dynamometer HWFET drive cycle
Reference Microsoot

Scoping Instrument Performance

Vehicle Speed [ km.hr™]
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dominated by ionization
signal and it start earlier
and is much larger than
reference



Scoping Instrument Performance

Same Vehicle ‘Regen’ Event
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Exhaust PM [ mg.m3]

Scoping Instrument Performance

Applying to non-Regen FTP
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@ Questions

| would like to end this presentation with a question of my
own before asking if you have any questions yourselves...

What we have is a very early and very tentative observation
based on one vehicle and one reference method but...

We think we are looking at the ‘wake of the ship’ rather than
the ‘ship” and we may need both the ship and the sea (the
particle and the exhaust environment) to produce the ‘wake.

Is this a viable monitoring strategy or should we be designing
it out of the next generations of the unit,
or is it even extra information?
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Instrument Development

Developing Diagnostics

Jan 22, 2016 at ARB, El Monte.

17
An impromptu experiment, designed by ARB, was done to see if parSYNC could identify "passing”" and "failing" vehicles.
ARB set their truck exhaust bypass to various settings we did not know. 11 tests were done, some repeats of each other.
15 1 Air was sampled between each test.
The test numbers are put next to the data representing each test. According to the parSYNC results:
13 -

- It appears 2, 7, & 9 are the same bypass settings angd should fail a roadside test (but would not be detected by opacity alone).
- Test 5 is the setting that would fail an opacity test.

-Tests 1, 3, 4, & 11 cannot be destinguished from angbient PM levels and should pass a roadside test.

11 { - Lesssure:

-- Tests 8 & 10 appear to be the same setting.
-- Tests 6 & 11 are similar.

11

-1 T T T = T T T T
11:16:48 AM  11:19:41 AM  11:22:34 AM  11:25:26 AM  11:28:19AM 11:31:12 AM 11:34:.05AM 11:36:58 AM 11:39:50 AM 11:42:43 AM 11:45:36 AM

(First reported by Burnette et al, 2016)



Vehicle A Before and After Repair

Diagnostics

Before Repair 1 After Repair

ionization ionization

The larger amounts of PM associate with opacity,
indicating relatively course emissions after repair
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Example Before and After Repair

Data Collection

Test procedure (before and after repair):
 Dynamometer test (modified AC50/80 Short Test)
* SNAP test

DYNO Set Point E— ECU Fuel Rat
DYNO Road Speed parSthll(eZ nge
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DYNO Set Point and Road Speed [km hr 1]

parSYNC CO; [rescaled]; ECU engine fuel rate [I/hr]
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local time [sec] local time [sec]; correlation alignment

(Data collected: Dynamometer records; ECU logger;
candidate analysers/sensor systems)



Example Before and After Repair

Data Collection

Test procedure (before and after repair):
 Dynamometer test (modified AC50/80 Short Test)
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Example Before and After Repair

Data Collection

Test procedure (before and after repair):
 Dynamometer test (modified AC50/80 Short Test)
* SNAP test
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Engine Torque

Vehicle A Before and After Repair

COZ Engine Map
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Vehicle A Before and After Repair
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Engine Torque

Vehicle A Before and After Repair

COZ Engme Map
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Engine Torque

Vehicle A Before and After Repair

COZ Engme Map
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Vehicle A Before and After Repair

NO Engme Map
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Engine Torque

Vehicle A Before and After Repair

NOZ Engme Map
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Engine Torgque

Vehicle A Before and After Repair

Opacity Engine Map

opacity before repair

80

60 —

40 —

20

_0.00

<

opacity after repair

=0.01

80

60

40

20

- 0.04

- 0.03

- 0.02

— 0.01

— 0.00

- —0.01

- —0.02

1000 1500
Engine Speed

2000




Engine Torque

Vehicle A Before and After Repair

Scattering Engine Map
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Engine Torque

Vehicle A Before and After Repair

lonization Engine Map
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Vehicle A Before and After Repair

CO, Maps

e On-board
diagnostic

e All data from
one source

* Independent
of OBD

Quick question
(good or bad fix?)

(Thanks to Norbert Ligterink/TNO)
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Vehicles Before and After Repair

Diagnostics

PCA of Vehicle A Emissions (before repair)
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Vehicles Before and After Repair

Diagnostics

PCA of Vehicle A Emissions (before repair)
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Vehicles Before and After Repair

Diagnostics

PCA of Vehicle A Emissions (before repair)
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Clustering Distance
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Vehicles Before and After Repair

Diagnostics
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Vehicle B Before and After Repair

Diagnostics
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