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EMISSIONS AND THEIR IMPACT

EMISSIONS DISPERSION EXPOSURE HEALTH IMPACTS



HIGH IMPACT AREAS AND FOCUSES

e For California, focus on disadvantaged communities.

SB 535 Disadvantaged Communities (2017)

using CalEnviroScreen 3.0 results
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DYNAMIC ENERGY AND EMISSIONS MANAGEMENT (DEEM)

 Managing Energy Consumption and Emissions in Real-Time
e Dynamic in terms of both spatially and temporally
e Management from both industry and regulatory perspectives
e Emissions of greenhouse gases, criterial pollutants, and air toxics

e Objectives of DEEM strategies

Disadvantaged Communities




VEHICLE & INFRASTRUCTURE INTEGRATION: TRAFFIC SYSTEMS

Improved traffic systems using intelligent vehicles and infrastructure to
maximize safety, health benefits, mobility and efficiency
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MODERN COMPLIANCE CONCEPTS

1. Sensor-Based Tailpipe Compliance evaluations would enable simple real-time in-use
compliance assessment during powertrain development and vehicle operation

Consider New Compliance Units: NOx ppm / Fuel Consumption

2. Independent Sensor-Based PEMS-Light would discourage defeat devices while enabling
cost effective compliance data over-check

Sensor-Based
PEMS-Lite

Consider New Compliance Units: NOx ppm / CO2 ppm

manufacturer would provide engine family compliance tracking while

3. Telematic Compliance Summaries periodically submitted to regulators from @
minimizing 3 party tampering and data ownership concerns O



ON-BOARD SENSING AND COMPLIANCE

XML-RPC Cluster
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Low COST MEASUREMENT SYSTEMS

Pegasor Mi3 TSI NPE
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Maha NOx, CO,, PM

Pegasor PM

NTK TSI NPET Solid PN
Testo PN

parSYNC NOx, CO,, PM

NTK NOx, PM, AFR,
PN ECM

ECM NOx, CO2/CO,
NH3,
O2/AFR,ECM

Axion Nox, CO2, CO,
THC, PM, ECM




e Based on real-
time or historical
air quality
patterns.

e Figures show
modeled fine
particle
concentration
from on-road
mobile sources in
Riverside,
California

DEEM - TEMPORAL APPLICATION
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DEEM STRATEGIES

* Transportation system level
\ Routing and navigation
\ Lower speed limits (aka, intelligent speed adaptation or speed harmonization)

* Vehicle/driver level
N Eco-driving
* Engine/powertrain level
\ Energy management for HEVs and PHEVs

\ Engine tuning
e Aftertreatment tuning



REAL-TIME EMISSION MODELING

Comprehensive Modal Emissions Model (CMEM)
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VERIFICATION AND ASSURANCES




SUMMARY THOUGHTS

* Vehicle system design shift from a laboratory focus to a in-
use focus

e Take advantage of technology (sensors, connectivity,
database, public)

* Revise regulation for DEEM concept (simple levers to control
future regulation decreases)

* New regulation approach will provide:
O Vehicle activity
O Measured/predicted in-use emissions
O Vehicle active population
O Spatially and temporal information



QUESTIONS

-.u.‘ s " s — .
: : 71 T L T = '-\.-...‘..":'-'f'l:u q.-.;,_'
ﬁ‘-%"ztﬂ.l“_'i‘ﬁ* AL S sm.. ey - e =




VEHICLE DESIGN IS A LABORATORY APPROACH

e 1970s Light duty emission standards
e 1980s Heavy duty emission standards

e 1990s Heavy duty in-use “Not-to-Exceed” standards and

Light duty OBD

e 2000s Heavy duty compliance testing protocol developed

e 2010s Heavy duty OBD introduced

What about for 2020s we design the vehicle systemf 0

world requirements under actual conditions?
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WHAT TOOLS ARE AVAILABLE FOR EMISSIONS: DESIGN

e Telematics

e Seasonal weather adjustments

e Location-specific emissions (geo-fencing)

* On-board sensing for control and reporting
e Advanced sensing for compliance
 Mapping and self-learning algorithms

e Predictive thermal management

 Model based control



WHAT TOOLS ARE AVAILABLE FOR EMISSIONS: COMPLIANCE

e Telematics and big data queries
e Seasonal weather adjustments
 Location-specific emissions (geo-fencing)

* Independent low cost high frequency measurements and
reporting



MICRO PORTABLE EMISSIONS MIEASUREMENT SYSTEMS

NTK PM sensor '
e W

Flow Velocity sensor
. (Hontzsch)

NTK NCEM System

Setup is < 1hr

Battery powered

Reliability is very robust

Calibration is not needed
Unattended operation is reasonable

ECM System



UPEMS NOXx ON AVERAGE ~ 20% OF REFERENCE METHOD
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> A more simple NOx/CO2 ratio may be more reliable since exhaust flow adds to the bias.
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UPEMS PM ON AVERAGE ~“70% OF REFERENCE METHOD
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> NTK PM was measured in-situ stack, PM2.5 was measured dilute from a CVS
without a catalytic stripper

> PM values were within 70% with PMa.s for engine dyno test



3DATX PARSYNC NO MEASUREMENT SYSTEM

NO Output
2017 Ford Explorer

4 minutes at
40-50 mph
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Data from 3DATX



Data from 3DATX

CO2 %

3DATX PARSYNC CO2 MEASUREMENT SYSTEM
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m A Sensory Array Measurement Strategy

parSYNC® Sensor Module
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Data from Karl Ropkins, Leeds University
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m Multiplex Algorithm

MPM4 [ mg m™]

Multiplex Sensor Fit
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COMPREHENSIVE MODAL EMISSIONS MODEL (CMEM)

 Microscale emission model
e Developed at UCR CE-CERT
e Initially developed in the 1990’s
e Sponsorship
e National Cooperative Highway Research Program (NCHRP)
e U.S. Environmental Protection Agency (EPA)
e Developed to model vehicle emissions
e project level ( sec-by-sec)
e Accurately reflect impacts of :

e Vehicle speed, acceleration, road grade, starting conditions, and
secondary engine load



CMEM EMISSION MODEL STRUCTURE

» Engine
Speed
operating b
parameters
Engine Fuel R Engine-Out Exhaust
Power uel Rate »  Emissions > After-
Demand Treatment
F
vehicle
parameters
Engine
Control

Fuel is a function of Engine Power Demand and Engine Speed

Fuel rate is related to emissions through analysis based on measured data

Model Inputs

* Operating parameters - vehicle speed, road grade, accessory power, etc.
* Vehicle parameters — weight, gear ratios, calibrated emission parameters, etc.

Model Outputs
and fuel use



FUEL RATE CALCULATION

(k0 +)
FR =
LHV
Py
P, = ?'l'Prun + Fyec
R
N = vS—L
Rt

k  =engine friction term

N =engine speed

D =engine displacement

P, = engine power

n = engine indicated efficiency
LHV = lower heating value of fuel

P, = tractive power demand

€  =drivetrain efficiency

P, =running losses

P,.. =accessory power demand

S =engine-speed/vehicle-speed in top gear
R, =gear ratio in Lt gear

R; =gear ratio in top gear

v =vehicle speed



MEETS EMISSION QuTPUTS HC
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MEETS EMISSION QuTPUTS CO
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