

Results of the European PN-PEMS Measurement Program for the Type A Approval of Light-Duty Vehicles in Europe

PEMS 2014 International Conference & Workshop 3-4 April 2014 Center for Environmental Research & Technology UC Riverside, USA

Francesco Riccobono, Martin Weiss, Barouch Giechaskiel, Pierre Bonnel

European Commission DG - Joint Research Centre (JRC) IET - Institute for Energy and Transport

The reference: PMP system

Candidate PN-PEMS systems

5 instruments (3 on market + 2 prototype)

All based on diffusion charging principle

Image source: Juha Tikkanen

PN-PEMS influencing parameters

- Temperature: Affects ion mobility
- Pressure: Affects ion mobility
- Morphology: Fractal particles acquire more charges
- Pre-existing charge: With the same polarity of ions
- Particle concentration: Due to ion depletion
- **Particle size**: Counting efficiency proportional to particle diameter to the power of 1.1–1.3

PN-PEMS efficiency

Difference PN-PEMS & PMP

Theoretical differences: -43% to +50% (GMD=40-90nn) Additional PMP and sampling position uncertainty

Sampling position uncertainty

Differences ± 25%

PMP detection limit

PMP vs PN-PEMS times series

PMP vs PN-PEMS times series (zoom in)

PMP vs PN-PEMS 1Hz

Unavoidable time misalignment due to different response time of the systems and time delay between tailpipe and CVS

Reported results are cycle average emission factor #/km

Time alignment uncertainty

Time alignment uncertainty

Logging exhaust flow would minimize the uncertainty

Max deviation from mean ±4%

Extreme condition: Regeneration

Very extreme condition: Moped

Calibration of the cut-off curve is needed

Requirements for next generation of PN-PEMS instruments

- Thermal treatment to remove volatile particles
- Calibration cut-off d₅₀ at 23 nm
- Definition of daily functionality checks (draft):
 - Status check: corona current and voltage, ion trap voltage, leak check.
 - Dilution ratio check: trace gas or particle generator.
 - Diffusion charging sensor check: zero check (HEPA filter), span check (ambient air vs reference CPC, PMP?).

Next: Same challenges of gas-PEMS

- PEMS equipment
 - Size, installation, safety
- Need to contain variability of parameters
 - Non-dynamic: altitude, ambient temperature
 - Dynamic and controlled: road grade, vehicle payload
 - Dynamic and uncontrolled: wind, vehicle speed and acceleration, engine load
- Data evaluation
 - Excluding data outside permissible operating conditions
 - Averaging window principle

Thanks for your attention!

francesco.riccobono@jrc.ec.europe.eu

Moving averaging window approach: Averages over subsets of tests; duration in line with type-approval cycle

Effect of ambient temperature

PMP efficiency

