Post-Dieselgate governments' testing campaign in Europe and defeat-device screening techniques

Yoann Bernard, Rachel Muncrief, John German, Jan Dornoff

March 30th, 2017

A comparison of laboratory vs. on-road test results for 3 diesel cars in the US triggered "Dieselgate"

On-road test

Laboratory test

Source for photos: AVL / ERMES Vehicles shown on photos are not related to test results shown

In reality, nitrogen oxides emissions from diesel cars in Europe have not decreased as expected

German real-world testing data found Euro 5 & 6 diesel cars emit NO_x emissions many times legal limits.

French on-track testings demonstrates that the cycle profile itself is not the only source of discrepancy

Type-approval cycle (NEDC) run on a track, and impact of ambient temperature

Euro 6 - NO_x results and limit

Strategy that:

- 1) Uses any sensing element or parameter,
- to apply an auxiliary emissions strategy (AES), or auxiliary emissions control device (AECD) that leads to <u>emissions</u> <u>control change</u>,
- 3) and without a valid reason (engine protection, accidents prevention, abnormal operation, etc)
 - In the US, alternative emissions strategies need to be approved by the authorities. Their non-disclosure is a violation
 - In EU, there is no need to disclose alternative strategies (changing in September 2017). EU member's states have been reliant on manufacturers explanations, and without verifying their justifications

A popular type of defeat device in EU is recognizing cold start conditions as type approval testing

Current type-approval (TA) procedure in EU

 Vehicles are approved under controlled laboratories conditions: temperature, humidity, pressure, etc

- On a well defined procedure and single cycle
- Repeatable conditions
- Limited representativeness of real-word conditions
- Subject to detection and optimization

Defeat device screening: testing from road to laboratory, and laboratory to the road

Bringing the laboratory conditions to the road

- Bringing the road to the laboratory
 - Changing test conditions: lower ambient air, A/C on, etc
 - Repeating a road trace on the chassis-dynamometer

Proposal of a on-road test matrix

Testing from real world (on-road) conditions towards closer type-approval conditions (on-track)

Proposal of a chassis-dynamometer test matrix

 Chassis-dynamometer test matrix example

Dyno type		Ambient			OBD	
4WD or 2WD	Test Cycle	Temperature	Cold start	AC	link	Remark
2WD	NEDC	25oC	yes	off	yes*	Repeat it at least once
						until level**** (constant soaking time
2WD	NEDC	25oC	no	off	yes*	between repeats)
4WD (if						
available)	NEDC	25oC	yes	off	yes*	-
4WD (if						until level**** (constant soaking time
available)	NEDC	25oC	no	off	yes*	between repeats)
4WD (if						
available)	NEDC	10oC	yes	off	yes*	-
4WD (if						until level**** (constant soaking time
available)	NEDC	10oC	no	off	yes*	between repeats)
4WD (if						
available)	NEDC	25oC	yes	on	yes*	-
4WD (if						
available)	NEDC	25oC	yes	off	yes*	-
4WD (if						
available)	NEDC	25oC	yes	off	no	-
						Repeat NEDC 3x starting from cold start.
						Do not shut off engine in between runs
4WD (if						but idle for the same soaking time used
available)	NEDC X 3	25oC	ves	off	ves*	in the other tests.
4WD (if	Steady state speed					
available)	stairstep***	25oC	no	off	yes*	-
4WD (if						
available)	NEDC	25oC	yes	off	yes*	No pre-conditionning
4WD (if	NEDC - modified trace					
available)	(i.e +2km/h)	25oC	yes	off	yes*	-
4WD (if						
available)	Artemis urban	25oC	yes	off	yes*	-
4WD (if						until level**** (constant soaking time
available)	Artemis urban	25oC	no	off	yes*	between repeats)

→ Testing with conditions closer to real word

Screening campaign: Euro 6 diesel passenger car

Test of a passenger car sold across Europe

- Diesel engine equipped with a selective catalyst reduction (SCR) compliant with latest Euro 6b standard
- NO_x type-approval limit is 80 mg/km

Preliminary results of the on-road/track test matrix

 On-track: a mix of urban/rural/motorway combining NO_x sensors and PEMS

NO_x engine-out and tail-pipe rate increase with time and as the engine gets warmer, even though the same urban track's pattern is repeated

Preliminary results on chassis-dynamometer

On chassis-dynamometer:

Cold start: NO_x engine-out and tail-pipe (mg / km)

- Cold start results are in line with the limits, and repeatable
- Test at lower ambient temperature at 14 deg C does not impact emissions results
- The standard test was repeated but with A/C on . NO_x engine-out and tail-pipe increase significantly and and exceed the limit by 50 %

Preliminary results on chassis-dynamometer

On chassis-dynamometer

- The hot engine start test confirms the use of a high NO_x engine-out strategy. But a highly
 efficient conversion from the aftertreatment brings emissions below the limit
- The hot test is repeated, but the engine is kept idling after the cold NEDC. That condition affects more significantly the results, mainly due to lower aftertreament conversion
- The hot test from idling is repeated with an altered NEDC profile (+2km/h). Engine-out emissions increase can be linked to the increased load. But NOx conversion from the aftertreatment drops abnormally below 30 %, leading to emissions more than 6x the regulatory limit, and 14x higher than during a hot start from a switched-off engine

Conclusion and outlook

- National testing by members states in EU have confirmed the high realworld NO_x emissions of diesel passenger cars
- The prevalent usage of defeat devices in EU was established, but claiming their illegality have failed so far
- A defeat-device preliminary screening protocol was presented, testing from on-road (NO_x sensor, PEMS) to chassis-dynamometer
- Results of such protocol were demonstrated on a Euro 6 vehicle, showing NO_x emissions up to 6x the regulatory limit without a substantial rationale for that behavior
- Up-coming real driving emissions (RDE) regulation associated with the future obligation to disclose auxiliary emission strategy will provide stronger enforcement capabilities, at the condition that type-approval authorities can assess their necessity
- But conducting tests outside RDE boundaries conditions will remain important in the future to ensure low emissions in the real world.