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Electrostatic CoorsTek PmTrac sensor for in-situ 
measurement of soot

• Naturally charged soot; bipolar with ~30% positive 
and ~30% negative

• Novel measurement with signal amplification, real-
time output, simple physical design, and tolerant of 
contaminants

• Potentially better sensitivity, response times, and 
durability than resistive-type that rely on burning 
off accumulation and can have false positives from 
contamination of repeated cycling

• Apply 1 kV (~800 kV/m field) to concentric 
electrostatic trap; measured current proportional 
to PM mass concentration (mg m-3)
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Measurement principle not completely understood, but 
seems related to soot growth to critical height

• Captured soot grows filamentous 
dendrites with high surface charge 
density that collapse without 
electric field

• Critical height where electric field 
exceeds binding force – highly 
charged fragments deposit on 
opposite electrode in chain reaction

• Growth, fragmentation, and charge 
transport – up to three orders of 
magnitude increase in measured 
charge current amplification
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Startup delay in new sensors for reaching steady-state 
amplification – influence of surface coatings

• Reduced delay when operated in higher 
soot concentrations or when previously 
operated in soot

• Turn on time – difference between current 
rise inflection (extrapolated from rise slope 
to baseline) and first soot exposure

• Previous work indicated influence of 
dendritic coatings to reduce turn on time:
– Rhenium (Re) 
– Nickel-cobalt (Ni-Co)
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High temperatures required for dendritic rhenium (Re) 
– fragile structures made replicating results difficult

• High-temperature chemical vapor deposition 
(CVD) of dendritic rhenium required refractory 
metal electrodes (molybdenum)

• Ford measurements indicated that although 
soot appears on Re peaks, they are much 
larger than the Re dendrite size

• Repeated measurements did not show robust 
and reproducible effect – evidence of damage 
to fragile structures
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Electrodepositon of dendritic nickel-cobalt (Ni-Co): 
correlating surface microstructure with turn on time

• Dendritic Ni-Co surfaces 
using room temperature 
electrodeposition onto 
stainless steel cylinders –
based on work by Silva et al.

• Altered surface 
microstructure using current 
density and number of 
cycles during 
electrodeposition
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Dendritic coatings – no obvious correlation between 
surface features and reduction in turn on time

• Laser scanning profilometry
and surface height analysis 

• Amplitude probability 
distribution function to 
quantify relative distributions 
and heights

• Minor reductions and some 
increases in turn on time – no 
clear correlation with surfaces

• Need for model system with 
good control of properties –
Iron (Fe)-based coatings
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feature (0 mm); max depth is 
base of feature

20 cycles

Heights in µm

Three electrodeposition
conditions: 

Copenhaver et al., J. Electrochem. Soc., 163, B234 (2016).



Thermal iron (Fe) oxide coatings
Grown in O2/Ar Grown in H2O/Ar

• Heated to 600°C in 2 sccm O2 and 20 
sccm Ar cooling in 20 sccm Ar

• 200 nm – 2 µm thick on Fe
• Fragile but initially robust to 

ultrasonication

• Heated to 400°C in 200 sccm Ar bubbled 
through H2O cooling in 200 sccm Ar

• 200 nm – 2 µm thick on Fe
• Fragile and not robust to ultrasonication

and cleaning

2µm 2µm500nm 500nm
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Porous iron (Fe) coatings
Sol-gel Porous foam

• Nanstructured surface using sol-gel synthesis
• Heated in air to 750°C and cooled in H2
• 30-50 μm coating on 1 mm Fe
• Robust to ultrasonication and cleaning
• Horizontal shrinkage difficult to control resulted in 

partial coverage

• Fe powder and polymethyl methacrylate (PMMA) 
beads (spherical voids) solvated in molten 
polyethylene glycol (PEG)

• PMMA:Fe ratio 50% by volume
• Heated in H2 to 750°C to prevent oxidation
• 80-100 μm coating on 1 mm Fe
• Robust to ultrasonication and cleaning
• Limited horizontal shrinkage and good coverage
• Other advantages: control of pore size, porosity and 

thickness

20µm 10µm 20µm 10µm
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Evaluated at Ford in parallel plate setup and CAST2 soot 
(avg dm~80 nm) – tested in similar pairs

Turn on time: difference 
between current rise 
inflection (extrapolated from 
rise slope to baseline) and 
first soot exposure

• Tested multiple 
times after 
cleaning – ethanol 
sonication and 
blown dry 

• Thermal Fe oxide 
too fragile for 
cleaning and only 
tested once

• Porous Fe showed 
faster turn on 
than polished Fe
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Robust reproducible behavior of Fe foam – modify 
surfaces with different size and volume of pore formers

• Fe powder with 1-5 µm 
particle size

• PMMA pore former with 
average size of either coarse 
30 µm or fine 15µm resulted 
in different pore size 
distributions

• Minimal variation in surface 
porosity likely due to coating 
thickness of 100-200 µm 
dominating structure 
development
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Iron (Fe) foam coatings – greater reduction in turn on 
time from polished Fe compared to sintered Fe

• Sintered Fe powder did show reduction in 
turn on time compared to polished Fe

• Fe foams consistently showed larger 
reductions in turn on time compared to Fe 
powder and polished Fe

• Indications that an increase in porosity 
from sintered Fe to porous Fe resulted in 
further reduced turn on time
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Faster turn on for 
Fe foam coatings

Polished Fe

Sintered Fe powder

Pair 5 seems fastest
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Summary and Conclusions
• Previous work indicated dendritic coatings on the high voltage electrodes of 

electrostatic PM sensors could reduce turn on time (i.e., delay in reaching 
steady-state amplification) 

• Larger reduction in turn on time for porous iron (Fe) coatings compared to 
sintered Fe coatings with lower porosity indicate potential role of surface 
morphology

• Indicates possible role of surface morphology to reduce the turn on time by 
reducing the amount of soot interaction needed to reach fragmentation and 
amplification

• Ongoing work to look at patterned/templated structures with defined 
geometries
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