

Development of Compact Multi Gas Measurement System (NCEM[©])

NGK SPARK PLUG CO., LTD.

Introduction

NGK SPARK PLUG CO., LTD.

- Real world emissions
- Development of low emissions engines <u>Challenges with existing PEMS</u>
 - Size Power consumption
 - Weight
 Complexity

Simpler and more user-friendly tools have a role to play

source: Nikkei Automotive, 2016.March

Target position

NGK SPARK PLUG CO., LTD.

We think there is a place for systems with lower accuracy than existing PEMS, but that are highly portable and cost effective.

Key features of NCEM

Purpose of this presentation

NGK SPARK PLUG CO., LTD.

emission concentrations on a chassis dynamometer.

PEMS workshop 2017

Evaluation of NCEM performance under expected actual use conditions.

- On-road driving emissions
- Pre-DPF environment on an engine dyno

NGK SPARK PLUG CO., LTD.

NTK test : concentrations between 1-2mg/m3) (PM comparison 3 PM PEMS 9 PM —PM PEMS 8 PM emission NCEM PM output PM concentration [mg/m3] [mg/mi] —NCEM PM output 2 7 6 5 4 3 0 2 PM PEMS NCEM 2005MY 0 mg/mi mg/mi Lite Duty 1500 2500 3000 500 1000 2000 3500 1.705 Diesel 1.522 Real time PM measurement during urban route [s] Error -10.7%

We confirmed good correlation with a PEMS in the case of high emissions levels.

NGK SPARK PLUG CO., LTD.

NTK test (PM comparison at low concentrations)

NGK NTK SPARK PLUGS TECHNICAL CERAMICS

NGK SPARK PLUG CO., LTD.

Test results at UCR

Table 2 Summary of route emission levels for freeway and local driving								
Results	NCEM (g/mi)	AVL (g/mi)		NCEM (mg/mi)	AVL (mg/mi)		NCEM (#/mi)	AVL (#/mi)
	NO _x	NO _x	NO ₂ /NOx	PM	PM-soot	PM	PN	PN
Freeway Arterial_1	2.17	2.26	27%	0.086	0.108	0.110	4.15E+11	2.22E+10
LA Down Town_1	2.30	2.26	34%	0.401	0.148	0.205	1.94E+12	3.07E+10
LA Down Town_2	2.47	2.39	35%	0.470	0.166	0.212	2.27E+12	4.46E+10
Idle, Creep	5.76	6.36	17%	0.800	0.368	1.056	3.87E+12	7.62E+10
Freeway Arterial_2	2.29	2.33	28%	0.114	0.109	0.131	5.49E+11	3.32E+10

Error less than 10%

NOx comparisons:

Measurements were consistent with PEMS in each test. Error between NCEM and PEMS was less than 10% over a mixture of highway and city driving.

NGK SPARK PLUG CO., LTD.

Test results at UCR

PM/PN comparisons:

Results	NCEM (g/mi)	AVL (g/mi)		NCEM (mg/mi)	M AVL (mg/mi) mi)		NCEM (#/mi)	AVL (#/mi)
	NO _x	NO _x	NO ₂ /NOx	PM	PM-soot	PM	PN	PN
Freeway Arterial_1	2.17	2.26	27%	0.086	0.108	0.110	4.15E+11	2.22E+10
LA Down Town_1	2.30	2.26	34%	0.401	0.148	0.205	1.94E+12	3.07E+10
LA Down Town_2	2.47	2.39	35%	0.470	0.166	0.212	2.27E+12	4.46E+10
Idle, Creep	5.76	6.36	17%	0.800	0.368	1.056	3.87E+12	7.62E+10
Freeway Arterial_2	2.29	2.33	28%	0.114	0.109	0.131	5.49E+11	3.32E+10

Table 2 Summary of route emission levels for freeway and local driving

PM: Maximum error 68%

PN: One order of magnitude higher

Significant deviation from the PEMS was observed at these very low tailpipe concentrations. \cdot PM <0.02 (mg/m3) \cdot PN <1E+04 (p/ccm) Cause: the output current offset introduces significant error. \Rightarrow Need to improve

Improvements

NGK SPARK PLUG CO., LTD.

FTP 2

FTP 3

FTP 1

Good repeatability (FTP run, 3 times) with PN PEMS under threshold of 6E+11 (p/km)

Improvements

NGK SPARK PLUG CO., LTD.

Offset variation reduction

Problem : Large deviations from PEMS were observed at very low concentrations because of offset current variation.

Solution : Improved the PM/PN module circuit.

Offset variation could be reduced by 81%. PM offset noise : < 0.01 mg/m3 PN offset noise : < 5E+04 p/ccm (In case of particle size 60nm configuration)

Evaluation results (engine test)

NGK SPARK PLUG CO., LTD.

Engine test (pre-DPF and post-DPF)

We performed engine tests to confirm the possibility of pre-DPF PM and PN measurements.

Evaluation results (engine test)

NGK SPARK PLUG CO., LTD.

NCEM PM output had good correlation with PM PEMS

at pre-DPF condition. $(R^2=0.97)$

Evaluation results (engine test)

NGK SPARK PLUG CO., LTD.

• We confirmed NCEM has the potential for real-time measurement of DPF efficiency.

NGK SPARK PLUG CO., LTD.

Next development products

I. PM/PN module for pre-DPF measurements Pomp capacity is not sufficient for high exhaust pressure conditions.

I. Mass flow module

To calculate distance specific emissions with NCEM alone.

II. Other sensors (CO2, etc.)

NGK SPARK PLUG CO., LTD.

sensor	signal	Upper range	Resolution	Repeatability
PM/PN (particle size 60nm configuration)	PM	50 mg/m3	0.005 ⇒ 0.001 mg/m ³	±10%
	PN	1.0E+8 #/cm3	10000 ⇒ 125 p/ccm	
NOx	NOx	1500 ppm	0.5 ppm	
AFR	02	27.7%	0.01%	

- ✓ NOx performance was good compared with current PEMS.
- ✓ PM/PN performance was sufficient to measure concentrations below the emissions threshold.⇒ NCEM has the potential to be a valuable screening tool.
- ✓ In addition, we confirmed NCEM has the potential to be used for measurement of DPF efficiency.

We expect that NCEM will be a good development tool.

NGK SPARK PLUG CO., LTD.

Thank you for your attention.