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Abstract — Recently there has been significant research 

on environment-focused Connected Vehicle (CV) 

applications that involve determining optimal speed profiles 

for vehicles traveling through signalized intersections and 

conveying this information to drivers via driver-vehicle 

interfaces (DVI’s). However, findings from previous studies 

indicate that drivers may not be able to precisely follow the 

recommended speed profiles, resulting in degraded 

effectiveness of the applications. Moreover, the DVI could 

be distracting, which may compromise safety. As an 

alternative, partial automation can play an important role in 

ensuring that the benefits of these CV applications are fully 

realized. In this study, a partially automated vehicle system 

with an eco-approach and departure feature (called the 

GlidePath Prototype), which can receive dedicated short 

range communication (DSRC) message sets from the 

intersection and automatically follow recommended speed 

profiles, was developed, demonstrated, and evaluated. The 

results revealed that compared to manually following the 

recommended speed profiles, the GlidePath Prototype 

reduced fuel consumption by 17% on average. In some 

cases, the fuel savings are greater than 40% while the travel 

time is shortened by up to 64%. Furthermore, the system 

potentially improved the driving comfort since it would 

smooth out the speed profiles. 

 
Index Terms — Eco-approach/departure, connected and 

automated vehicle (CAV), intelligent transportation systems. 

 

I. INTRODUCTION 

ith increasing public awareness of the need to reduce 

carbon emissions and rapid advances in information and 

communication technology, a significant amount of 

research has been conducted to develop energy/environment-

focused Connected Vehicle (CV) applications. The European 

Union has initiated a series of programs and projects, such as 

eCoMove [1] and Compass4D [2], in which traffic information 

can be shared in real-time among all road users and 

infrastructure to encourage more efficient and sustainable 

operations of the entire transportation system. Another good 

example is the U.S. Department of Transportation’s AERIS 

(Applications for the Environment: Real-Time Information 

Synthesis) program [3], which aims to develop a variety of CV 

applications that are specifically designed to reduce the 

environmental footprint of surface transportation. 

Among the CV applications developed under the AERIS 

program, the Eco-Approach and Departure at Signalized 

Intersections (EAD) application has shown great promise in 

terms of reducing fuel consumption and pollutant emissions [4]. 

Like other CV applications that involve determining optimal 

speed profiles for vehicles traveling within an urban 

transportation network (e.g., [5-9]), the EAD application 

utilizes signal phase and timing (SPaT) information from the 

upcoming traffic signal to determine a recommended speed 

profile that minimizes vehicle energy consumption and 

pollutant emissions when approaching to and departing from a 

signalized intersection. The recommended speed profile is then 

conveyed to the driver through driver-vehicle interfaces 

(DVI’s). However, the driver may not be able to precisely 

follow the recommended speed profile [11], resulting in 

degraded effectiveness of the application. Furthermore, these 

DVIs could be distracting, which may compromise safety. 

In this respect, partial vehicle automation, even at Level 1 

(function-specific automation) or Level 2 (combined function 

automation) [10], can play an important role in better following 

the recommended speed profiles, thereby ensuring that the 

benefits of the EAD application are fully realized. In [11], a 

numerical simulation study was conducted to quantify the 

supplementary benefits from partial vehicle automation. As a 

continuation of research in [11], a partially automated version 

of the EAD application, called GlidePath Prototype, has been 

developed, demonstrated, and evaluated in this study. The 

GlidePath Prototype system is the first of its kind, integrating 

state-of-the-art connected vehicle and automated vehicle 

control technologies. 

The remainder of this paper is organized as follows: Section 

II presents background information on vehicle movement at 

signalized intersections and the associated energy consumption. 

The core algorithm of the GlidePath Prototype system—vehicle 

trajectory planning—is then elaborated in Section III. Next, 

detailed description of the GlidePath experiment as well as data 

collection efforts are presented in Section IV, followed by 

comparative analyses of the collected data (for both manual and 

partially automated driving) and discussion of the results in 

Section V. Lastly, Section VI concludes this paper along with 

further discussion on future work. 
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II. BACKGROUND 

A. Vehicle Movements at Isolated Intersections 

For signalized arterials, consider the scenario of a single 

traffic light as shown in Figure 1. In this figure, velocity 

trajectories of four different vehicles confronted with the traffic 

light at different signal phases and timings are shown by the 

green, blue, red, and yellow lines. Note that all these trajectories 

have the same initial and final velocities, and the same traveled 

distance (e.g., within the dedicated short range communication 

(DSRC) range). More specifically, the scenario can be divided 

into the following four cases: 

 Scenario 1 (“cruise”): The vehicle cruises through the 

intersection with constant speed (green line); 

 Scenario 2 (“speed-up”): The vehicle speeds up to pass 

the intersection and then gets back to the initial speed 

after the intersection (blue line); 

 Scenario 3 (“coast-down with a full stop”): The 

vehicle slows down and stops at the intersection (red 

line); 

 Scenario 4 (“coast-down without a full stop” or 

“glide”): The vehicle slows down and passes the 

intersection with a mid-range speed, and then speeds 

up to its initial speed (yellow line).  

 
Figure 1. Illustration of different scenarios for a vehicle approaching a 

signalized intersection. 

Even though all these vehicles cover the same distance with 

the identical initial and final velocities, the associated fuel 

consumption and emissions may vary greatly. Generally 

speaking, Scenario 3 likely uses the most amount of fuel as the 

vehicle has to decelerate to a full stop, idle for a certain period, 

and then accelerate from stop to the final velocity. However, 

fuel consumption of Scenario 1 may be comparable to that of 

Scenario 2 and/or Scenario 4, depending on detailed maneuvers 

(e.g., acceleration rate, top speed, duration) under each driving 

modes (i.e., acceleration, cruise, and deceleration) during the 

trips. 

Therefore, as a vehicle travels down a signalized corridor, it 

would likely be better to speed up or slowdown a moderate 

amount in advance if maintaining current speed will not allow 

itself to pass through the intersection within the green phase. As 

the vehicle approaches a signal, its velocity can be dynamically 

adjusted to minimize fuel consumption and emissions. This is 

the basic idea behind the vehicle trajectory planning algorithm 

proposed in [11] and deployed in this study. 

B. Eco-Driving along Urban Arterial 

Over the years, a variety of eco-driving strategies have been 

developed to improve the energy efficiency for traveling along 

signalized intersections in the urban area [5- 9, 11, 12]. For 

example, Ozatay et al. proposed eco-driving algorithms with 

analytical and/or numerical solutions that can minimize the fuel 

consumption for vehicles passing through signalized corridors 

[22, 23]. He et al. considered the queue effect at signalized 

intersections when planning the vehicle trajectory for fuel 

efficient driving [24]. A recent study by Jin et al. took the 

“bottom-up” approach, i.e., selecting the best powertrain 

operation state at each time step while satisfying the exogenous 

constraints (e.g., preceding vehicle movement, traffic signal 

control), and formulated the problem into a mixed integer linear 

program in order to obtain the vehicle dynamics that minimize 

the fuel consumption for urban driving [25]. In addition, results 

from the numerical simulation study show that the “bottom-up” 

approach outperformed some existing algorithms in terms of 

energy savings. Some other studies focus on the development 

or evaluation eco-driving strategies from the perspective of 

traffic flows [26]. Besides the research on traditional fossil 

fueled vehicles, more and more studies have been focused on 

the development of eco-driving strategies for alternative fueled 

vehicles, such as hybrid electric vehicles, battery electric 

vehicles. They applied various optimization strategies, 

including Dynamic Programming [27] and Pontryagin's 

Minimum Principle [28], to obtaining the most energy efficient 

speed profiles in consideration of some unique features (e.g., 

regenerative braking).  

However, most of these strategies (especially from the 

partially automated perspective) were only tested in the 

simulation environment (i.e., using vehicle simulators, driving 

simulators or microscopic traffic simulators). And some of 

them could be too computationally demanding to be deployed 

in the field. In this study, our proposed vehicle trajectory 

planning algorithm was validated in a real world system. 

C. Comprehensive Modal Emissions Model (CMEM) 

In this study, the Comprehensive Modal Emissions Model 

(CMEM) [13] is used to accurately assess the fuel consumption 

and emissions of each run of the experiment ground vehicle 

(XGV). CMEM is a microscopic emissions model that is 

capable of predicting second-by-second fuel consumption and 

tailpipe emissions of carbon dioxide (CO2), carbon monoxide 

(CO), hydrocarbons (HC), and nitrogen oxides (NOx) based on 

different modal operations from an in-use vehicle fleet. In the 

modeling approach of CMEM, the entire fuel consumption and 

emissions process is broken down into components that 

correspond to physical phenomena associated with vehicle 

operation and emissions production, as represented by the 

following key equations: 

𝑃𝑡𝑟 = max {𝑀 ∙ 𝑣 ∙ (𝑎 + 𝑔 ∙ sin𝜃) + (𝑀 ∙ 𝑔 ∙ 𝐶𝑟 +
𝜌

2
∙ 𝑣2 ∙ 𝐴 ∙

𝐶𝑎) ∙ 𝑣, 0} (1) 

𝑃𝑒𝑛𝑔 = 𝑃𝑡𝑟 𝜂𝑡𝑓⁄ + 𝑃𝑎𝑐𝑐           (2) 

𝐹𝑢𝑒𝑙𝑟𝑎𝑡𝑒 ≈ 𝜙 ∙ (𝑘 ∙ 𝑁 ∙ 𝐷 +
𝑃𝑒𝑛𝑔

𝜂𝑒𝑛𝑔
) ∙

1

44
     (3) 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡𝑎𝑖𝑙𝑝𝑖𝑝𝑒 = 𝐹𝑢𝑒𝑙𝑟𝑎𝑡𝑒 ∙
𝑔𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑔𝑓𝑢𝑒𝑙
∙ 𝐶𝑃𝐹  (4) 

Scenario 1

Scenario 2

Scenario 3
Scenario 4

Speed

Distance

Accelerating Cruising

Communication Region

Intersection 

of Interest

Cruising

Vinitial Vfinal
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where 𝑃𝑡𝑟  is the tractive power (kW); 𝑀  is the vehicle mass 

(kg); 𝑣  is the vehicle velocity (m/s); 𝑎  is the vehicle 

acceleration (m/s2); 𝑔 is the gravitational constant (i.e., 

9.81m/s2); 𝜃  is the road grade angle (in fraction); 𝐶𝑟  is the 

rolling resistance coefficient; 𝜌 is the mass density of air (i.e., 

1.225 kg/m3, depending on temperature and altitude); 𝐴 is the 

vehicle cross sectional area (m2); 𝐶𝑎 is the aerodynamic drag 

coefficient; 𝑃𝑒𝑛𝑔 is the engine power (kW); 𝜂𝑡𝑓 is the combined 

efficiency of the transmission and final drive; 𝑃𝑎𝑐𝑐  is the power 

demand  (kW) associated with the operation of accessories, 

such as air conditioning, power steering and brakes, and other 

electrical loads; 𝜙 is the fuel/air equivalence ratio; 44 (kJ/g) is 

the lower heating value of a typical gasoline; 𝑘 is the engine 

friction factor, representing the fuel energy used at zero power 

output to overcome engine friction per engine revolution and 

unit of engine displacement); 𝑁 is the engine speed (revolutions 

per second); 𝐷  is the engine displacement (litre); 𝜂𝑒𝑛𝑔  is the 

indicated engine efficiency; (𝑔𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑔𝑓𝑢𝑒𝑙⁄ ) is the engine-

out emissions per unit of fuel consumed; and 𝐶𝑃𝐹  is the 

catalyst pass fraction, which is defined as the ratio of tailpipe to 

engine-out emissions. CPF usually is primarily a function of 

fuel/air ratio and engine-out emissions. 

Each component of CMEM is modeled as an analytical 

representation consisting of various parameters that are 

characteristic of the process. These parameters vary according 

to vehicle type, engine, emission control technology, and level 

of deterioration. Some of them are available from the public 

resources or specifications (e.g., engine displacement), while 

others are measured or calibrated in the dedicated facilities [13]. 

CMEM has been developed primarily for microscale 

transportation models that typically produce second-by-second 

vehicle trajectories (location, velocity, and acceleration). These 

vehicle trajectories can be applied directly to the model, 

resulting in both individual and aggregate energy/emissions 

estimates. 
 

III. VEHICLE TRAJECTORY PLANNING ALGORITHM AND ITS 

COMPONENTS 

At the core of the GlidePath Prototype system, Vehicle 

Trajectory Planning Algorithm (VTPA) is responsible for 

generating the reference speed trajectory as the input to the 

longitudinal controller. 

A. Vehicle Trajectory Planning Algorithm (VTPA) 

Figure 2 depicts the system diagram of the vehicle trajectory 

planning algorithm (VTPA), where external inputs include: 

 Vehicle’s current states, such as location (i.e., latitude, 

longitude and altitude) received from the PinPoint
TM

 

system [20] and instantaneous velocity obtained from the 

vehicle CAN Bus interface. It turns out the PinPoint
TM

 

system can provide quite precise location information (up 

to the centimeter level) of the test vehicle in this study; 

 Message sets received from the DSRC device, which 

include SPaT and MAP (also referred to as geometric 

intersection description or GID) messages; and  

 System constraints and parameters, such as maximum 

acceleration and deceleration, maximum jerk (i.e., 

derivative of acceleration), and roadway speed limit. 

The output is the target velocity. A further insight into the 

VTPA system shows there are five sub-systems: 

1) MAP Parser: by following SAE J2735 protocol [21], this 

sub-system can decode the MAP messages broadcasted by 

the road-side equipment (RSE) and extract the 

characteristics of key nodes at/around the intersection, such 

as latitudes, longitudes and elevations along each approach 

and departure lane; 

2) Map Matcher: based on the vehicle’s current location, 

stop-bar location, and locations of those key nodes in-

between, this sub-system can compute the lane ID and the 

vehicle’s distance to the stop-bar or distance-to-arrival 

(DTA) at each time step; 

3) SPaT Parser: Also by following SAE J2735 protocol, this 

sub-system can decode the SPaT messages broadcasted by 

the RSE and extract the current signal status (i.e., 

green/yellow/red and solid/arrow) applicable to the current 

lane as well as the range (the minimum and maximum) of 

count-down to the end of current status; 

4) Green Window Estimator: this sub-system aims at 

estimating available green windows for the subject vehicle 

according to the vehicle’s desired movement, SPaT and 

signal controller’s type (e.g., fixed-time or traffic-

responsive) and settings. For a fixed-time signal controller, 

it is quite easy and robust to estimate green windows due 

to its simple control logic. But for a traffic-response signal 

controller, more advanced statistical techniques need to be 

employed to obtain relatively more reliable estimation of 

green windows, depending on the degree of actuation [14]. 

5) Decision Maker: this sub-system takes into account the 

holistic information, including system constraints (e.g., 

maximum acceleration/deceleration, roadway speed limit,), 

to identify the scenario (see Section II. B) where the subject 

vehicle faces and determines the appropriate target speed 

profile. As shown in Figure 3, this sub-system consists of 

two components: 1) Scenario Identifier; and 2) Trajectory 

Generator. 

 
Figure 2. Sub-systems of VTPA. 
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Figure 3. Diagram of the decision maker sub-system. 

B. Scenario Identifier 

As shown in Figure 4, the Scenario Identifier component is 

to identify into which scenario the target vehicle trajectory 

should be categorized, based on some key parameters (such as 

speed, SPaT, distance to stop bar and other system constraints) 

at current time. For example, if the subject vehicle can cruise at 

the current velocity and pass the intersection at green, then the 

trajectory is categorized into Scenario 1 (cruise), and the cruise 

time to arrival, 𝑡𝑐𝑟, is given as 

𝑡𝑐𝑟 = 𝑑0 𝑣𝑐⁄          (5) 

where 𝑑0  is the route distance to the stop-bar and 𝑣𝑐  is the 

instantaneous speed at current time instant, 𝑡0. In addition, the 

available green window, 𝛤, can be written as follows: 

𝛤 = {
[𝑡0, 𝑔𝑒

𝑐𝑢𝑟𝑟)⋃[𝑔𝑠
𝑛𝑒𝑥𝑡 , 𝑔𝑒

𝑛𝑒𝑥𝑡),   𝑖𝑓  "𝐺𝑟𝑒𝑒𝑛" 𝑎𝑡 𝑡0
[𝑔𝑠
𝑛𝑒𝑥𝑡 , 𝑔𝑒

𝑛𝑒𝑥𝑡),   𝑖𝑓 "𝑌𝑒𝑙𝑙𝑜𝑤" 𝑜𝑟 "𝑅𝑒𝑑" 𝑎𝑡 𝑡0
  (6) 

where 𝑔𝑒
𝑐𝑢𝑟𝑟  denotes the end of current green window 

associated with the vehicle’s movement; 𝑔𝑠
𝑛𝑒𝑥𝑡  and 𝑔𝑒

𝑛𝑒𝑥𝑡 

represent the start and end of next green window, respectively. 

Generally speaking, 𝛤 should be the set of all subsequent green 

windows after 𝑡0. But within the limited communication range 

of DSRC (300 meters, nominally), the time window up to the 

end of next green should be practically long enough to tackle 

with most situations. For some extreme situations, e.g., over-

saturated traffic conditions, the green windows after the next 

cycle can be included in 𝛤 (in theory), but it is very likely that 

the vehicle has to stop due to the long queue effect. 

If Scenario 1 is not guaranteed, then the earliest time to 

arrival, 𝑡𝑒(< 𝑡𝑐𝑟), will be calculated to determine whether the 

trajectory satisfies the condition of Scenario 2, i.e., speed-up 

(without violating the speed limit) to pass through the signal 

without any stop. The calculation of 𝑡𝑒 largely depends on the 

proposed trajectory model, a piecewise trigonometric-linear 

function, which will be elaborated in the following section. 

If it is determined that the subject vehicle will not be able to 

pass the intersection by moderate acceleration, then the  vehicle 

has to decelerate to a full stop (Scenario 3) or to glide in an 

environmentally friendly manner (Scenario 4), depending on 

the latest time to arrival without any stop, 𝑡𝑙(> 𝑡𝑐𝑟). Again, the 

calculation of 𝑡𝑙 is model-dependent. 

 

Figure 4. Diagram of scenario identifier. 

C. Trajectory Generator 

This component is to determine the actual time-to-arrival, 

𝑡𝑎𝑟𝑟 (for Scenario 3, it is the time instant to leave from the stop-

bar), and the target vehicle trajectory for each scenario. As 

mentioned in Section 2, the proposed control logic for the target 

velocity tries to minimize the vehicle’s acceleration/ 

deceleration before the intersection, so that the vehicle can pass 

the intersection with the target speed that is closest to its initial 

speed (assuming it is the free-flow speed). Therefore, after 

passing the intersection, the vehicle can get back to its initial 

speed with minimal fuel usage. As suggested in previous 

literature [15, 16], there are numerous ways to accelerate or 

decelerate from one speed to another, such as the constant 

acceleration and deceleration rates, linear acceleration and 

deceleration rates, and constant power rates. The family of 

piecewise trigonometric-linear functions is selected as the 

target velocity profiles (for both approach and departure 

portions), due to its mathematical tractability and smoothness 

[17].  

The basic idea for our generated trajectory is: the acceleration 

and deceleration are designed to achieve the desired cruise 

speed in the shortest amount of time, while ensuring the driving 

comfort by limiting the jerk. In order to avoid unnecessary 

idling, the vehicle tries to reach the intersection during the green 

phase of the signal. 
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vh

Time

Speed

tm t10 tarr

d0

 
where 𝑡𝑚 = 𝜋 (2𝑚)⁄ ; 𝑡1 = 𝑡𝑚 + 𝜋 (2𝑛)⁄ ; 𝑡𝑎𝑟𝑟 = 𝑑0 𝑣ℎ⁄ . 
Figure 5 (a). Acceleration profile of the piecewise trigonometric-linear 

function. 
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where 𝑡𝑚 = 𝜋 (2𝑚)⁄ ; 𝑡1 = 𝑡𝑚 + 𝜋 (2𝑛)⁄ ; 𝑡𝑎𝑟𝑟 = 𝑑0 𝑣ℎ⁄ . 
Figure 5 (b). Deceleration profile of the piecewise trigonometric-linear 

function. 
For Scenario 1, since the vehicle is able to cruise through the 

intersection, the time-to-arrival, 𝑡𝑎𝑟𝑟 = 𝑡𝑐𝑟 , and the target 

velocity, 𝑣𝑡 , is simply the current velocity (at 𝑡 = 0, without 

loss of generality), 𝑣𝑐. 
For Scenario 2, the approach portion takes the similar shape 

of acceleration profile in Figure 5 (a). To reach back to 𝑣𝑐 after 

passing the signal, the departure portion is the mirror symmetry 

of the approach one for simplicity. More specifically, without 

compromising the travel time, the time-to-arrival is given as 

𝑡𝑎𝑟𝑟 = min  min{[𝑡𝑒, 𝑡𝑐𝑟]  𝛤}   (7) 

The target velocity, 𝑣𝑡 = 𝑓(𝑡|𝑣𝑐 , 𝑣ℎ), where 

𝑓(𝑡|𝑣𝑐 , 𝑣ℎ) =

{
 
 
 
 

 
 
 
 𝑣ℎ − 𝑣𝑑 ∙ cos (𝑚𝑡) 𝑡  [0,

𝜋

2𝑚
)

𝑣ℎ − 𝑣𝑑 ∙
𝑚

𝑛
∙ cos [𝑛 ∙ (𝑡 +

𝜋

𝑛
− 𝑡1)] 𝑡  [

𝜋

2𝑚
, 𝑡1)

𝑣ℎ + 𝑣𝑑 ∙
𝑚

𝑛
𝑡  [𝑡1,

𝑑0

𝑣ℎ
)

𝑣ℎ − 𝑣𝑑 ∙
𝑚

𝑛
∙ cos [𝑛 ∙ (𝑡 +

3𝜋

2𝑛
− 𝑡2)] 𝑡  [

𝑑0

𝑣ℎ
, 𝑡2)

𝑣ℎ − 𝑣𝑑 ∙ cos [𝑚 ∙ (𝑡 − 𝑡3)] 𝑡  [𝑡2, 𝑡3)

𝑣𝑐 𝑡  [𝑡3, +∞)

     (8) 

and 𝑛 (>0) is chosen as the maximum that satisfies: 

{
 
 

 
 

|𝑛 ∙ 𝑣𝑑| ≤ 𝑎𝑚𝑎𝑥
|𝑛 ∙ 𝑣𝑑| ≤ 𝑑𝑚𝑎𝑥

|𝑛2 ∙ 𝑣𝑑| ≤ 𝑗𝑒𝑟𝑘𝑚𝑎𝑥

𝑛 ≥ (
𝜋

2
− 1) ∙

𝑣ℎ

𝑑0

       (9) 

and, 

𝑚 =

−
𝜋

2
𝑛−√(

𝜋

2
𝑛)
2
−4𝑛2∙[(

𝜋

2
−1)−

𝑑0
𝑣ℎ
∙𝑛]

2[(
𝜋

2
−1)−

𝑑0
𝑣ℎ
∙𝑛]

      (10) 

where 𝑣ℎ = 𝑑0 𝑡
𝑎𝑟𝑟⁄ , representing the target average speed 

given target arrival time, 𝑡𝑎𝑟𝑟; 𝑣𝑑 = 𝑣ℎ − 𝑣𝑐 , representing the 

difference between current speed and target average speed;   

𝑡1 = 𝜋 2𝑚⁄ + 𝜋 (2𝑛)⁄ ; 𝑡2 = 𝑑0 𝑣ℎ⁄ + 𝜋 (2𝑛)⁄ ; 𝑡3 = 𝑑0 𝑣ℎ⁄ +
𝜋 (2𝑚)⁄ + 𝜋 (2𝑛)⁄ ; 𝑎𝑚𝑎𝑥  and 𝑑𝑚𝑎𝑥  are the maximum 

acceleration and deceleration, respectively; |𝑗𝑒𝑟𝑘𝑚𝑎𝑥| = 10 

m/s3 is the maximum jerk whose value was chosen as 

recommended in [18]; The parameters 𝑚  and 𝑛  define the 

family of trigonometric functions, whose values control the rate 

of change in acceleration and deceleration profiles. In addition, 

the parameters 𝑚 and 𝑛 are coupled in order to guarantee the 

smoothness of entire speed profile (especially at those break 

points) and the area under the curve being the distance to the 

stop-bar, 𝑑0. 

According to the Equation Set (8), the earliest time-to-

arrival, 𝑡𝑒, can be calculated as 

𝑡𝑒 =
𝑑0−𝑣𝑐∙

𝜋

2𝑝

𝑣𝑙𝑖𝑚𝑖𝑡
+

𝜋

2𝑝
        (11) 

and 

𝑝 = min {
2∙𝑎𝑚𝑎𝑥

𝑣𝑙𝑖𝑚𝑖𝑡−𝑣𝑐
, √

2∙𝑗𝑒𝑟𝑘𝑚𝑎𝑥

𝑣𝑙𝑖𝑚𝑖𝑡−𝑣𝑐
}      (12) 

where, 𝑣𝑙𝑖𝑚𝑖𝑡  represents the upper limit (hard constraint) of the 

target velocity due to the subject vehicle’s ability or roadway 

enforcement. 

As aforementioned, to determine if the speed profile belongs 

to Scenario 3 or Scenario 4, the latest time-to-arrival without 

any stop, 𝑡𝑙, can be calculated as 

𝑡𝑙 =
𝑑0−𝑣𝑐∙

𝜋

2𝑞

𝑣𝑐𝑜𝑎𝑠𝑡
+

𝜋

2𝑞
        (13) 

and 

𝑞 = min {
2∙𝑎𝑚𝑎𝑥

𝑣𝑐−𝑣
𝑐𝑜𝑎𝑠𝑡 , √

2∙𝑗𝑒𝑟𝑘𝑚𝑎𝑥

𝑣𝑐−𝑣
𝑐𝑜𝑎𝑠𝑡}     (14) 

where 𝑣𝑐𝑜𝑎𝑠𝑡 denotes the coasting speed (e.g., 8 mph) which is 

a user-defined parameters based on driving comfort. 

For Scenario 3, since the vehicle needs to have a full stop at 

the stop-bar, the time-to-arrival is not equal to the time to leave 

from the stop-bar, or 𝑡𝑎𝑟𝑟 < 𝑔𝑠
𝑛𝑒𝑥𝑡 and the target velocity, 𝑣𝑡 =

𝑔(𝑡|𝑣𝑐 , 𝑣ℎ), where 

𝑔(𝑡|𝑣𝑐 , 𝑣ℎ) =

{
 
 
 
 

 
 
 
 𝑣ℎ − 𝑣𝑑 ∙ cos (𝑚𝑡) 𝑡  [0,

𝜋

2𝑚
)

𝑣ℎ − 𝑣𝑑 ∙
𝑚

𝑛
∙ cos [𝑛 ∙ (𝑡 +

𝜋

𝑛
− 𝑡1)] 𝑡  [

𝜋

2𝑚
, 𝑡1)

𝑣ℎ + 𝑣𝑑 ∙
𝑚

𝑛
𝑡  [𝑡1, 𝑔𝑠

𝑛𝑒𝑥𝑡)

𝑣ℎ − 𝑣𝑑 ∙
𝑚

𝑛
∙ cos [𝑛 ∙ (𝑡 +

3𝜋

2𝑛
− 𝑡4)] 𝑡  [𝑔𝑠

𝑛𝑒𝑥𝑡 , 𝑡4)

𝑣ℎ − 𝑣𝑑 ∙ cos [𝑚 ∙ (𝑡 − 𝑡5)] 𝑡  [𝑡4, 𝑡5)

𝑣𝑐 𝑡  [𝑡5, +∞)

  (15) 

and, 

𝑛 = 𝑚 =
𝑣ℎ

𝑑0
∙ 𝜋         (16) 

where 𝑡4 = 𝑔𝑠
𝑛𝑒𝑥𝑡 + 𝜋 (2𝑛)⁄ ; 𝑡5 = 𝑡4 + 𝜋 (2𝑚)⁄  and 𝑣ℎ =

𝑣𝑐 2⁄ ; Due to Equation (16), Equation Set (15) can be further 

simplified as 

{
 

 
𝑣𝑐 2⁄ + 𝑣𝑐 2⁄ ∙ cos (𝑚𝑡) 𝑡  [0, 𝑡𝑎𝑟𝑟)

0 𝑡  [𝑡𝑎𝑟𝑟 , 𝑔𝑠
𝑛𝑒𝑥𝑡)

𝑣𝑐 2⁄ + 𝑣𝑐 2⁄ ∙ cos  [𝑚 ∙ (𝑡 − 𝑡5)] 𝑡  [𝑔𝑠
𝑛𝑒𝑥𝑡 , 𝑡5)

𝑣𝑐 𝑡  [𝑡5, +∞)

     (16’) 

For Scenario 4, the time-to-arrival is given as 

𝑡𝑎𝑟𝑟 = min  min{[𝑡𝑐𝑟 , 𝑡𝑙]  𝛤}   (17) 

And the target velocity, 𝑣𝑡 = ℎ(𝑡|𝑣𝑐 , 𝑣ℎ)  shares the same 

format of 𝑓(𝑡|𝑣𝑐 , 𝑣ℎ), but 𝑣𝑑 < 0. Figure 6 summarizes how to 

determine the time-to-arrival, 𝑡𝑎𝑟𝑟, the average speed, 𝑣ℎ, and 

the target speed, 𝑣𝑡, for each of the four scenarios. 
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Figure 6. Diagram of trajectory generator. 

 

IV. GLIDEPATH TESTBED AND DATA COLLECTION 

In this section, the GlidePath testbed and field experiment for 

data collection will be described in detail. Figure 7 illustrates 

all sub-systems of the GlidePath testbed, including GlidePath 

Prototype (i.e., experiment ground vehicle or XGV) and 

relevant roadside infrastructure. 

 
Figure 7. Sub-systems of GlidePath testbed. 

A. GlidePath Prototype 

The GlidePath prototype is a 2010 Ford Escape Hybrid 

outfitted by TORC® Robotics with ByWire XGV System, 

enabling full-range longitudinal speed control (see Figure 8). 

Other key components or functionalities integrated into the test 

vehicle include: 1) DSRC on-board equipment (OBE); 2) 

advanced positioning system; 3) driver-vehicle interface; 4) 

emergency stop and manual override; and 5) data logging. 

The GlidePath Prototype and its subsystems can be 

controlled by several input mechanisms that, in combination, 

serve as transitions between the vehicle states which are 

depicted in Figure 9. 

B. Test Site 

The field test was conducted at the Turner-Fairbank Highway 

Research Center (TFHRC) in McLean, Virginia using the 

Saxton Lab Intelligent Intersection, which offered a sheltered 

traffic environment where the automated prototype was able to 

be tested with minimal safety risk and without disrupting live 

traffic operations.  

 

 

 
Figure 8. XGV setup and driver-vehicle interface (DVI). 

 
Figure 9. GlidePath prototype system state transition diagram. 

Figure 10 provides an overview of the field test site, 

specifying starting point where the vehicle will begin test runs 

from a stop and travel westbound towards the intersection and 

relevant roadside infrastructure (including an Econolite 2070 

controller, Windows PC to encode SPaT and MAP messages, 

and Arada Locomate DSRC Roadside Unit). The test zone 

covers a range from 190 meters to the east of the intersection to 

116 meters to the west, which allows a maximum traveling 

speed of up to 30 mph. The traffic signal controller was set up 

for fixed timed signal plan: 27-seconds green, 3-seconds 

yellow, followed by 30-seconds of red, which has removed 

excess all red clearance timings and all loop detector triggers 

from actuating the signal. 

 
Figure 10. Field study site in Turner Fairbank Highway Research Center in 

McLean, VA. 
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C. Data Collection 

The field experiment was designed to be comprehensive in 

that the test vehicle will approach the intersection at different 

times throughout the entire signal cycle (i.e., every 5 seconds in 

the 60-second cycle). Furthermore, the vehicle approached the 

intersection at different driving speeds (i.e., operating speeds), 

ranging from 20 mph to 25 mph.  The limitations of the TFHRC 

facility roadway prevent use of higher operating speeds.  The 

vehicle fuel economy and CO2 emissions were then calculated 

by applying the CMEM model to the logged trajectories, and 

compared between the following stages: 

 Stage I: “manual-uninformed” driving. At this stage, a 

driver approached and traveled through the intersection in 

a normal fashion without guidance or automation, stopping 

as needed without any automated vehicle control. Data 

collected at this stage establish a baseline that can be used 

as a point of comparison for the Stage II and III 

experiments. 

 Stage II: “manual-DVI-assisted” driving. At this stage, a 

driver was provided an enhanced dashboard which 

presented a speed range band overlaid onto a speedometer 

for the driver to follow as guidance on how to approach and 

depart the intersection in an environmentally friendly 

manner while obeying the traffic signal (see Figure 11).  

This stage does not involve any automated vehicle control 

but the advisory speed trajectories were generated using 

VTPA described previously. In addition, the recommended 

speed profile can be re-calculated throughout the route if 

the subject cannot follow the recommendation well enough 

(i.e., the accumulative following error reaches some user-

defined threshold). Such mechanism may trigger the 

change from one scenario to another en-route. 

 Stage III: “(partially) automated” driving. At this stage, 

the developed GlidePath prototype system was responsible 

for longitudinal control of the vehicle allowing it to speed 

up or slow down while the driver steered for lateral control 

and monitored the application on the DVI (shown in Figure 

12). At this stage, the vehicle automatically controlled the 

brake and throttle based on the output of the Vehicle 

Trajectory Planning Algorithm (VTPA), which calculated 

an eco-friendly velocity profile according to the DSRC 

message sets and distance to the stop-bar. Figure 13 

presents an example of the actual speed vs. reference speed 

(i.e., the controlled input) to show the tracking 

performance of the longitudinal controller. System 

parameters were adjusted to accommodate the tracking 

errors and delay.  

For the Stage I and Stage II experiments, four drivers who 

had no previous exposure to the Eco-Approach and Departure 

concept were recruited to conduct test runs. For the Stage III 

experiments, the test vehicle was operated by a trained driver to 

maintain safety as a top priority. Because the GlidePath 

prototype system can automatically control the longitudinal 

motion of the vehicle, it is not necessary for novice drivers to 

operate the vehicle during the “(partially) automated” driving 

stage. 

 

Figure 11. Graphic interface for “manual-DVI-assisted” driving. 

 

Figure 12. Graphic interface for “(partially) automated” driving. 

 

Figure 13. Example of actual speed vs. reference speed in the field test (when 
the operating speed is 20 mph and the entry time in phase is 27 seconds after 

the green on-set). 

In order to cover every possible driving scenario (as 

mentioned in Section II), a field study matrix (i.e., Table 1) that 

varies the vehicle’s operating speed and signal timing start with 

respect to the overall cycle of the traffic signal, was developed 

for each driver at each stage.  This test matrix consists of the 

operating speed along the vertical axis, and the delay in the 

signal cycle across the horizontal access as well as the expected 

current phase of the traffic signal.  In this matrix, there are a 
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total of 12 (intervals) × 2 (speed levels) = 24 test cells. For the 

experiments, the drivers had to drive through the intersection at 

least once in order to fill out the field study matrix for each cell. 

Therefore, a total of 24 (test cells) × 2 (manual stages) × 4 

(drivers) + 24 (test cells) × 1 (automated stage) = 216 test runs 

were conducted. For each data run, key data elements were 

logged at 10Hz and post-processed to determine energy 

consumption and other performance measures. 

V. RESULTS AND ANALYSES 

Due to the applicability of the CMEM model, results in this 

Section are based on the second-by-second trajectories 

aggregated from higher resolution (e.g., 10 Hz) data. 

Comparative studies between different stages have been 

conducted on a test cell basis and on a scenario basis, 

respectively. Both environmental sustainability and mobility 

will be evaluated here. 

A. Test Cell-Based Comparison 

As aforementioned, field study matrices have been created to 

facilitate the presentation of test results. Since there are multiple 

drivers involved in the data collection for Stage I and Stage II, 

aggregated statistics (e.g., mean, standard deviation, and 

median) are calculated for comparison. As noted in [19], 

median is more robust than mean. Therefore, the following 

evaluation will focus on the medians of performance measures.  

Fuel Consumption and Emissions 

Table 1 summarizes results on fuel consumption per distance 

for different stages at different operating speeds, based on the 

estimation from CMEM. As shown in the table, Stage III 

(“automated” driving) outperforms (on average) either Stage I 

(“manual-uninformed” driving) or Stage II (“manual-DVI-

assisted” driving) in terms of fuel consumption at different 

operating speeds. Stage II performs (on average) better than 

Stage I when operating speed is 25 mph but there is trivial 

difference between them in the case of 20 mph. To gain further 

insight, each cell is colored based on scenario (i.e., “cruise”, 

“speed-up”, “coast-down with stop”, and “glide”) into which 

the test run sample is categorized. It can be observed that:  

 Scenario 2 (“speed-up”) occurred for Stage III but neither 

for Stage I (no information on when the phase will change) 

nor Stage II. The reason is that the “median” driver at Stage 

II could not closely follow the speed advice at the 

beginning, therefore the recalculation mechanism triggered 

the change in scenario from 2 to 3 (“coast-down with 

stop”). 

 Scenario 3 never occurred for Stage III under the settings 

in this study. But with shorter approach portion, longer red 

phase and higher coasting speed, “automated” driving may 

still have to experience a full-stop scenario. 

 Further investigation on cells of “Green 7” (at 20 mph of 

operating speed) reveals that, the “median” driver at Stage 

I barely passed through the intersection at yellow (labeled 

as Scenario I) while the “median” driver at Stage II failed 

to follow the recommendation well enough and missed the 

“speed-up and pass” opportunity even with DVI-assistance 

(scenario changed from 2 to 3 en-route). 

 
Table 1. Median of Normalized (by distance) Fuel Consumption (across All Drivers) for Each Test Cell (gram/mile) 

Speed 

(mph) 

Phase Green Red 
Avg. 

TIPa 2 7 12 17 22 27 2 7 12 17 22 27 

20 

Ib 58.1 60.9 143.1 135.7 126.7 126.2 126.5 111.6 57.9 56.6 60.2 61.1 93.7 

IIc 63.8 111.1 137.3 128.0 116.4 122.0 122.8 80.8 61.5 57.0 60.9 60.3 93.5 

IIId 54.5 56.1 92.4 107.8 101.6 92.8 80.9 59.8 56.8 51.8 51.4 53.6 71.6 

25 

I 62.1 55.3 159.6 157.2 153.8 146.2 141.1 136.5 109.1 58.2 60.3 59.5 108.2 

II 54.7 58.7 144.5 148.5 140.1 138.7 139.2 130.9 71.3 55.3 53.8 55.2 99.2 

III 48.4 50.0 97.2 142.1 134.4 132.1 130.3 97.5 75.3 49.3 49.1 46.7 87.7 
a Time-In-Phase when the test vehicle entered the region (i.e., 190 meters to the stop-bar); 
b Stage I: “manual-uninformed” driving; 
c Stage II: “manual-DVI-assisted” driving; 
d Stage III: “automated” driving. For this stage, there is only one run in each cell. 
 

  Scenario 1   Scenario 2   Scenario 3   Scenario 4 

Table 2. Median of Trip Time (across All Drivers) for Each Test Cell (second) 

Speed 

(mph) 

Phase Green Red 
Avg. 

TIP 2 7 12 17 22 27 2 7 12 17 22 27 

20 

I 32.5 32.5 62.5 57.0 52.0 47.5 42.0 37.0 33.0 32.5 33.0 33.5 41.3 

II 34.5 49.0 62.0 58.0 52.5 47.5 43.0 35.5 34.5 34.5 33.5 34.5 43.3 

III 35.0 33.0 27.0 60.0 57.0 50.0 46.0 39.0 35.0 35.0 35.0 36.0 40.7 

25 

I 27.0 27.5 59.5 56.0 50.0 46.5 41.0 36.0 30.0 27.5 27.0 27.0 37.9 

II 27.0 27.5 60.5 56.0 51.0 46.5 42.0 36.5 28.5 28.0 28.0 27.0 38.2 

III 28.0 28.0 22.0 59.0 56.0 50.0 46.0 38.0 33.0 28.0 28.0 28.0 37.0 

 

To better evaluate the improvement in fuel economy for the 

GlidePath Prototype system, relative changes (from one stage 

to another) are calculated and shown in Figure 14 (a) and Figure 

14 (b). As can be seen from the figures, Stage III can, on 

average, save about 18% – 20% fuel (but varying from 2% to 

46%), compared to Stage I at different operating speed. The 
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performance of Stage II significantly varies with operating 

speed. For example, Stage II consumed 8% less fuel than Stage 

I at 25 mph, but it required 4% more fuel consumption at 20 

mph. 

Figure 14 (a) and Figure 14 (b) also present the standard 

deviation of relative improvement on fuel consumption per 

distance across all drivers between stages. It can be observed 

from the figures that compared to Stage II, the “automated” 

driving performs much more robustly. In other words, the 

“automatic” driving can provide much higher fuel savings over 

Stage I but with much less variations. For example, as the 

operating speed changes from 20 mph to 25 mph, the standard 

deviation of relative fuel reductions (on average) provided by 

Stage II driving (over Stage I driving) vary from 15.2% to 

18.5%, while the standard deviation range due to the 

introduction of Stage III is only between 6.3% and 9.0%. In 

addition, Stage I is (on average) less variant than Stage II, which 

may result from the more disturbing driving behaviors caused 

by the DVI assistance. Another interesting find is that the 

standard deviation of relative improvement in fuel consumption 

is usually high for those scenario boundary cells (e.g., “Green 

12” cells for 25 mph in Table 1), due to the fact that the 

situations in these cells are very sensitive to the driver’s 

behavior (e.g., reaction time, capability to follow the driving 

guidance). 

 
Figure 14 (a). Relative change (%) between stages (and standard deviation) in 
median of normalized fuel consumption across all drivers (operating speed is 

20 mph). 

 
Figure 14 (b). Relative change (%) between stages (and standard deviation) in 

median of normalized fuel consumption across all drivers (operating speed is 

25 mph). 

Mobility 

Besides the fuel consumption and pollutant emissions, 

mobility performance (in terms of trip time) are also compared 

across different stages at different operating speeds. As shown 

in Table 2, the average trip time of Stage III (“automated” 

driving) is slightly less than that of the “median” driver at Stage 

I (“manual-uninformed” driving), while the “median” driver at 

Stage II (“manual-DVI-assisted” driving) performed the worst, 

i.e., the average trip time is the longest. A test cell-based 

comparison on Table 2 may reveal that most of the mobility 

benefits of Stage III result from the cells (i.e., the blue cells) 

where “speed-up and pass” scenarios occurred, compared to the 

“full-stop” scenarios of “manual” driving. 

B. Scenario-Based Comparison 

Most drastic changes in performance measures for the same 

stage occur at boundary cells between different scenarios. In 

addition, the majority of benefits (in terms of environmental 

sustainability and mobility) of Stage III lie in those cells whose 

scenarios are different from “manual” driving. A comparison 

between scenarios (i.e., aggregation of associated cells in Table 

1 and Table 2) of related stages may provide more in-depth 

understanding on the performance of both “automated” and 

“manual” driving. 

Table 3 and Table 4 summarize the results for fuel 

consumption and trip time on a scenario basis (column-wise 

combination), where cells that experienced the associated 

scenarios are aggregated and relative changes (%) are then 

calculated. As can be observed from Table 1 and Table 2, for 

example, in cell “Green 12” at the operating speed of 25 mph, 

the “automated” driving is experiencing Scenario 2 while the 

“median” driver at Stage I and Stage II is experiencing Scenario 

3. The improvements in fuel economy and trip time for the 

“automated” driving can be as high as 40% and 64%, 

respectively. This will contribute to the values (35.5% and 

40.2%) in Table 3 where the Stage row is “III vs. I” or “III vs. 

II” while the column is “2 vs. 3” in Scenario (at 20 mph). If 

“automated” driving is experiencing Scenario 4 while “manual” 

driving is experiencing Scenario 3 (e.g., the cells from “Green 

17” to “Red 2” at different operating speeds), then reduction in 

fuel consumption may range from 9% to 29% (depending on 

both stage and operating speed). It is noted that there are some 

increases in trip time. The hypothesis is that the departure 

trajectories in Stage III are much smoother (i.e., less aggressive 

acceleration and stable under automated control) than Stage I or 

II, even though the starting speeds of Stage III are a bit higher 

than those of Stage I or II when leaving the intersection at the 

start of green with compromise of mobility. The smoother 

acceleration profile for departure contributes to the increase in 

trip time for “automated” driving stage. 

Table 3. Relative Improvement (%) between Stages with Respect to Median 

of Normalized Fuel Consumption (Scenario-Based) 

Speed 

(mph) 
Stage 

Scenario 

1 vs 1 2 vs 1 2 vs 3 3 vs 1 3 vs 3 4 vs 3 4 vs 4 

20 

II vs I -3.3 / / -82.4 4.8 27.6 / 

III vs I 8.8 7.9 35.5 / / 29.3 / 

III vs II 11.7 / 40.2 / / 21.7 26.0 

25 

II vs I 5.9 / / / 5.9 / 34.7 

III vs I 17.5 / 39.1 / / 13.4 31.0 

III vs II 12.3 / 32.8 / / 8.7 -5.6 
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Table 4. Relative Improvement (%) between Stages with Respect to Median 

of Trip Time (Scenario-Based) 

Speed 

(mph) 
Stage 

Scenario 

1 vs 1 2 vs 1 2 vs 3 3 vs 1 3 vs 3 4 vs 3 4 vs 4 

20 

II vs I -4.3 / / -50.8 -0.8 4.1 / 

III vs I -7.0 -1.5 56.8 / / -7.0 / 

III vs II -2.6 / 45.9 / / -6.0 -9.9 

25 

II vs I -1.1 / / / -1.2 / 5.0 

III vs I -2.9 / 63.0 / / -8.5 -10.0 

III vs II -1.8 / 63.6 / / -7.3 -15.8 

 

VI. CONCLUSIONS AND FUTURE WORK 

In this study, the GlidePath Prototype system was developed 

and its performance was evaluated through extensive field 

experiments and comparisons with manual driving (both 

“uninformed” and “DVI-assisted”). By integrating connected 

vehicle technology with vehicle automation, the GlidePath 

Prototype system has exhibited great potential in reducing the 

vehicle’s fuel consumption when traveling through the 

signalized intersection. The results show fuel savings of around 

17% on average, with actual savings depending on the 

operating speed, the status of SPaT when engaging the system, 

and the availability of driving assistance. In contrast, use of 

DVI alone (Stage II) improved fuel economy over uninformed 

driving (Stage I) by only 5% on average, with a wide range of 

responses (18% standard deviation). Different drivers 

responded to the DVI differently, giving a wide range of fuel 

economy results. Through the use of automated longitudinal 

control, Stage III fuel economy results were much more 

consistent. When the “speed-up” scenarios are applicable, the 

GlidePath Prototype system (Stage III) is able to significantly 

improve mobility in addition to fuel efficiency. However, in 

other scenarios (especially the “glide” scenarios), the trip times 

of GlidePath Prototype system may be longer, because of the 

smoother trajectories (compared to manual driving with and 

without assistance) were deployed during the departure. It 

should be noted that in our testing, the vehicle could only 

reliably receive SPaT messages from the DSRC-equipped 

intersection within 190m (upstream) due to the blockage by 

trees and vertical curve effects of the testbed. Higher benefits 

may be expected, if the GlidePath Prototype system can start to 

take effect at a further distance (e.g., 300m which is a nominal 

DSRC range) upstream from the signalized intersection. 

The comparative analysis results also indicate that there are 

still research gaps in the area of driver-vehicle interface design. 

Although the core algorithm (i.e., eco-friendly vehicle 

trajectory planning) is the same as in the GlidePath Prototype 

system, the performance of “DVI-assisted” driving is not as 

good as anticipated (especially at the operating speed of 20 

mph). A more user-friendly design of DVI should be developed 

to how and when information should be disseminated to the 

driver. In addition, further improvement in the GlidePath 

Prototype system should be performed to guarantee its 

effectiveness in a variety of real-world situations (e.g., 

operation in mixed traffic under actuated signal control). 

Besides, the integration of cooperative maneuvers among 

multiple connected vehicles (e.g., platooning via vehicle-to-

vehicle communication) with different automation levels 

capabilities may result in some compound benefits. Another 

interesting research topic would be to develop an automated 

Eco-Approach and Departure system for a signalized corridor 

(e.g., multiple instrumented intersections with actuated signal 

timing) using long-range communication technologies such as 

the cellular network. From the perspective of near-term 

deployment, the validation of the proposed system (combined 

with preceding vehicle detection from e.g., a front radar, as 

shown in [14]) in a mixed traffic environment (with both 

connected and non-connected vehicles) should be an immediate 

next step. 
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