
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340511322

Driver Behavior Modeling using Game Engine and Real Vehicle: A Learning-

Based Approach

Article · April 2020

CITATIONS

0
READS

187

10 authors, including:

Some of the authors of this publication are also working on these related projects:

EV Eco-Driving View project

Development and Evaluation of Intelligent Energy Management Strategies for Plug-in Hybrid Electric Vehicles (PHEV) View project

Ziran Wang

Toyota Motor North America, InfoTech Labs

28 PUBLICATIONS   148 CITATIONS   

SEE PROFILE

Xishun Liao

University of California, Riverside

4 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

Chao Wang

University of California, Riverside

13 PUBLICATIONS   7 CITATIONS   

SEE PROFILE

Guoyuan Wu

University of California, Riverside

139 PUBLICATIONS   1,127 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Ziran Wang on 19 April 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/340511322_Driver_Behavior_Modeling_using_Game_Engine_and_Real_Vehicle_A_Learning-Based_Approach?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/340511322_Driver_Behavior_Modeling_using_Game_Engine_and_Real_Vehicle_A_Learning-Based_Approach?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/EV-Eco-Driving?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Development-and-Evaluation-of-Intelligent-Energy-Management-Strategies-for-Plug-in-Hybrid-Electric-Vehicles-PHEV?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ziran_Wang3?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ziran_Wang3?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Toyota_Motor_North_America_InfoTech_Labs?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ziran_Wang3?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xishun_Liao?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xishun_Liao?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Riverside?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xishun_Liao?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chao_Wang404?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chao_Wang404?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Riverside?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chao_Wang404?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guoyuan_Wu?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guoyuan_Wu?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Riverside?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Guoyuan_Wu?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ziran_Wang3?enrichId=rgreq-673a8797b42c91a2718001641673b9a5-XXX&enrichSource=Y292ZXJQYWdlOzM0MDUxMTMyMjtBUzo4ODIxMDI4NjYzMDkxMzJAMTU4NzMyMTEyMDY2Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

 

1 

 

Abstract—As a good example of Advanced Driver-Assistance 

Systems (ADAS), Advisory Speed Assistance (ASA) helps improve 

driving safety and possibly energy efficiency by showing advisory 

speed to the driver of an intelligent vehicle. However, driver-based 

speed tracking errors often emerge, due to the perception and 

reaction delay, as well as imperfect vehicle control, degrading the 

effectiveness of ASA system. In this study, we propose a learning-

based approach to modeling driver behavior, aiming to predict 

and compensate for the speed tracking errors in real time. Subject 

drivers are first classified into different types according to their 

driving behaviors using the k-nearest neighbors (k-NN) algorithm. 

A nonlinear autoregressive (NAR) neural network is then adopted 

to predict the speed tracking errors generated by each driver. A 

specific traffic scenario has been created in a Unity game engine-

based driving simulator platform, where ASA system provides 

advisory driving speed to the driver via a head-up display (HUD). 

A human-in-the-loop simulation study is conducted by 17 

volunteer drivers, revealing a 53% reduction in the speed error 

variance and a 3% reduction in the energy consumption with the 

compensation of the speed tracking errors. The results are further 

validated by a field implementation with a real passenger vehicle. 

 
Index Terms—Driver behavior, game engine, machine learning, 

neural network, advanced driver-assistance systems, human-in-

the-loop simulation, field implementation 

I. INTRODUCTION AND BACKGROUND 

A. Introduction 

APID growth has been witnessed worldwide in the 

development of intelligent vehicles due to the 

improvements in perception, communication, and computation 

technologies. As an enabler of intelligent vehicles, Advanced 

Driver-Assistance Systems (ADAS) aim to support drivers by 

providing either warnings to reduce risk exposure or advisory 

information to relieve drivers’ burden on some of the driving 

tasks [1]. Many studies on ADAS have been conducted over the 

past several decades, such as pedestrian detection [2], vehicle 

overtaking [3], forward collision avoidance, and adaptive cruise 

control [4]. 

As a typical example of ADAS, Advisory Speed Assistance 

(ASA) systems are developed that recommend speed limits to 

bound the vehicle speed on highways, or generate advisory 

speed profiles for human drivers to track on signalized arterials 

[5], [6], [7]. The advisory information is delivered to the driver 

via a human-machine interface (HMI), allowing him/her to 

control the longitudinal speed to improve safety, mobility, 

and/or environment factors. 

However, human tracking errors are inevitably introduced 

into ASA systems, since it is impossible for drivers to track 

advisory speed profiles perfectly. It is concluded by one of our 

previous studies that the speed tracking errors may account for 

as high as 12% degradation in system performance (i.e., energy 

consumption) of the original ASA design [8]. Therefore, in this 

study, we focus on modeling driver behavior and compensate 

for the speed tracking errors in a personalized manner.  

B. Driver Behavior Modeling 

Driver behavior plays a significant role in the development 

of ADAS in terms of driving safety as well as vehicle energy 

management. Numerous research and development efforts have 

been focused on the topic of driver behavior identification and 

classification. Martinez et al. reviewed a variety of algorithms 

with an emphasis on machine learning approaches, and also 

discussed applications of driver behavior recognition [9]. 

Many researchers proposed to use rule-based approaches for 

driver behavior modeling, which are usually defined for 

particular events or factors, such as acceleration/deceleration, 

turning movements, lane changes, road types, vehicle gaps, and 

energy consumption [10], [11], [12]. One major drawback of 

the rule-based approaches is the complexity of encoding driver 

behavior by a fixed number of rules, since it may vary 

significantly with drivers and scenarios, and too many 

parameters need to be considered. Also, the quality of a rule-

based algorithm is highly affected by the selection of those 

parameters, which heavily relies on the algorithm designer’s 

expertise [9]. 

More recently, there has been an increasing amount of 

research that utilizes learning-based approaches for driver 

behavior modeling, given their advantages to process massive 

data. Specifically, both unsupervised and supervised machine 

learning algorithms have been proposed. Since unsupervised 

algorithms do not require the underlying procedures to be 

understood, modeling of driver behavior is achieved through 

statistical analysis of the input signals inherent to the 

algorithms. Constantinescu et al. developed two alternative 

algorithms to model driver behavior, based on hierarchical 

cluster analysis (HCA) and principal component analysis 

(PCA), respectively [13]. The Gaussian Mixture Model (GMM) 

was implemented by Miyajima et al. to analyze the car-

following behavior [14], and was also adopted by Butakov and 

Ioannou to develop personalized driver/vehicle lane change 

models [15]. The Bayesian learning was implemented by 

McCall and Trivedi to evaluate critical situations regarding 

Ziran Wang, Member, IEEE, Xishun Liao, Student Member, IEEE, Chao Wang, Student Member, IEEE, 

David Oswald, Guoyuan Wu, Senior Member, IEEE, Kanok Boriboonsomsin, Member, IEEE, Matthew J. Barth, 

Fellow, IEEE, Kyungtae Han, Senior Member, IEEE, BaekGyu Kim, Member, IEEE, and Prashant Tiwari 

Driver Behavior Modeling using Game Engine 

and Real Vehicle: A Learning-Based Approach 

R 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

 

2 

braking assistance [16], while a Bayesian regression model was 

developed by Mudgal et al. to characterize driver behavior at 

roundabouts [17]. 

Supervised algorithms imply knowledge of the data used for 

training driver behavior models. The neural network and 

Markov model have been adopted as two major supervised 

learning approaches for driver behavior modeling. Xu et al. 

developed a distal learning control framework with two 

feedforward neural networks [18], while Augustynowicz 

applied an Elman-type neural network to identify driver 

behavior based on the vehicle speed and throttle pedal position 

[19]. In addition, Wei et al. proposed an end-to-end lane change 

behavior prediction model with the deep residual neural 

network [20]. For Markov models, since future states only 

depend on current states and the transition can be categorized 

by transition probability matrices, their benefits in terms of 

modeling time-continuous driver behavior were defended by 

Guardiola et al. [21]. The Dynamical Markov Model [22], and 

Hidden Markov Model [23], [24], [25] were developed by 

different researchers to model driver behavior, with the 

consideration of drivers’ actions being best captured as a 

sequence of control steps. 

C. Game Engine 

Game engines are software systems that allow software 

developers to design video games, and typically consist of a 

rendering engine (i.e., “renderer”) for 2-D or 3-D graphics, a 

physics engine for collision detection and response, and a scene 

graph for the management of multiple elements (e.g., models, 

sound, scripting, threading, etc.). Along with the development 

of a game engine, its function has been broadened to a wider 

scope: data visualization, training, medical, and military use. 

More recently, the game engine becomes a popular option for 

researchers worldwide to prototype connected vehicles [26], 

ADAS [27], and autonomous vehicles [28]. LGSVL is 

developed by the Unity game engine to facilitate testing and 

development of autonomous driving software systems, and it 

provides real-time outputs from sensors like camera, LiDAR, 

RADAR, GPS, and IMU [29], [30]. CARLA is implemented as 

an open-source layer over UnrealEngine4 (UE4), from the 

ground up to support training, prototyping and validation of 

autonomous driving models [31], [32]. 

Although there are several other options to conduct driver 

behavior modeling and simulation, such as the commercial 

automotive simulation software PreScan and CarSim [33], [34], 

the Unity game engine is adopted in this study given the 

following strengths [26]: 

• Graphics rendering and visualization: Since the game engine 

is originally for developing 3D video games, it has a strong 

capability of graphics rendering and visualization. It 

streamlines the demonstration of the proposed intelligent 

vehicle technology to the general public. 

• Integration with driving simulators: The game engine 

provides easy access to switch the input equipment, which 

makes it possible to integrate with driving simulator 

hardware, as well as virtual reality (VR) and augmented 

reality (AR) equipment for future development.  

• Asset store: The Unity game engine has an official asset store 

where developers and users can upload and download 

different Unity assets, allowing them to develop a game 

environment based on existing work instead of building 

everything from scratch. 

• Documentation and community: Unity provides thorough, 

well-organized, and easy-to-read documentation covering 

how to use each component in Unity. An online community 

has been set up for all Unity users to ask and answer 

questions. 

D. Paper Structure 

The remainder of this paper is organized as follows: In the 

problem statement of Section II, the major contributions of this 

study compared to existing work are presented. Section III 

explains the detailed design of the proposed ASA in the game 

engine. Section IV develops a learning-based approach to 

modeling driver behavior of our ASA, aiming to predict and 

compensate for the speed tracking errors by using historical 

data generated by volunteer drivers. Results of the human-in-

the-loop simulation using the Unity game engine are given in 

Section V, where further validation is performed with a real 

passenger vehicle described in Section VI. Finally, the paper is 

concluded with some future directions in Section VII. 

II. PROBLEM STATEMENT 

In this study, we develop an ASA system using a head-up 

display (HUD) design with the Unity game engine and a HMI 

design on a real passenger vehicle, allowing various drivers to 

either conduct the human-in-the-loop simulation or drive a real 

vehicle to track the advisory speed. However, given that the 

driver cannot perfectly follow the advisory speed command 

generated by ASA system, speed tracking errors will always be 

generated. Therefore, we further propose a learning-based 

approach to modeling driver behavior, aiming to predict and 

compensate for the speed tracking errors generated by each 

driver in a personalized way. 

Compared to many previous studies on driver behavior 

modeling (including our previous work [8]), the major 

contributions of this study are listed below: 

• Personalized advisory: By adopting the learning-based 

approach with a nonlinear autoregressive (NAR) neural 

network, the proposed system can classify different drivers 

into certain types and provide personalized advisory 

information. To this end, the accuracy and effectiveness of 

the proposed ASA system can be greatly improved, 

compared to existing systems that only provide general 

advisory information to all drivers. 

• Integrated vehicle system: Instead of only focusing on 

predicting driver behavior, we design an integrated vehicle 

system which includes a motion controller, a learning model, 

and user interfaces (both HUD and HMI). This integrated 

vehicle system is also presented by two proofs of concept. 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

 

3 

 
Fig. 1. System architecture of the proposed learning-based driver behavior modeling system.

• Multi-platform online validation: Different from some 

existing work that validate their driver behavior models using 

synthetical data with numerical simulation, we design an 

ASA system with HUD in the game engine and invite various 

volunteer drivers to conduct the human-in-the-loop 

simulation on the driving simulator platform, so the 

improvement of the proposed driver behavior model can be 

observed in real time. Furthermore, we validate the 

effectiveness of our driver behavior model using a real 

passenger vehicle. This study allows various drivers to 

participate and test the proposed model in two different 

platforms, so the results will be more convincing than any 

previously proposed studies which simply conduct computer 

simulation. 

• Wide applicability: Although only a specific cooperative 

merging scenario is considered in this study, the proposed 

learning-based driver behavior model can be applied to 

various traffic scenarios, as long as the advisory speed is 

helpful for human drivers. For example, the similar concept 

can be applied to scenarios like speed harmonization on 

highways [35], eco-driving on signalized corridors [6], or 

stop-free unsignalized intersection management [36]. 

The general architecture of the proposed ASA system is 

shown in Fig. 1. The whole system can be broken down into 

four different phases, including the online actuation phase, the 

online calculation phase, the online learning phase, and the 

offline training phase. The former two phases are introduced in 

Section III, while the latter two phases are depicted in Section 

IV. 

III. ASA IN THE GAME ENGINE 

This section first introduces the cooperative merging 

algorithm (i.e., the online calculation phase) which generates 

the advisory speed for the driver. Then the development of the 

online actuation phase within the game engine environment is 

described, which is later applied to the real passenger vehicle as 

well. Lastly, driver’s inputs to the Unity game engine based on 

the HUD design are introduced as a simplified vehicle 

dynamics model. Note that Unity is not a software specifically 

designed for vehicle simulation, so the low-level vehicle 

dynamics model needs to be customized by users to reach the 

best simulation performance.  

A. ASA for Cooperative Merging 

In this study, we focus on an on-ramp cooperative merging 

scenario, where the controlled intelligent vehicles can 

collaborate with each other (by adjusting longitudinal speeds 

only) to perform on-ramp merging safely and smoothly through 

V2X communication. Our previously proposed 

feedforward/feedback motion control algorithm is applied here 

to calculate the advisory longitudinal speed [37]. Basically, 

once the controlled intelligent vehicle 𝑖  is assigned with a 

leader vehicle 𝑗 to follow by the sequencing protocol developed 

in [38], it retrieves information of this leader vehicle through 

V2X communication, which includes length 𝑙𝑗 , longitudinal 

speed 𝑣𝑗 , and longitudinal position 𝑟𝑗 . Then, the proposed 

motion controller takes those inputs as well as the vehicle 

dynamics data from the ego vehicle, and computes a reference 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

4 

acceleration 𝑎𝑟𝑒𝑓  for the ego vehicle at the next time step by the 

following algorithm 

 
𝑎𝑟𝑒𝑓(𝑡 + 𝛿𝑡) = −𝛼𝑖𝑗𝑘𝑖𝑗 ⋅ [(𝑟𝑖(𝑡) − 𝑟𝑗(𝑡 − 𝜏𝑖𝑗(𝑡)) + 𝑙𝑗 + 𝑣𝑖(𝑡)

⋅ (𝑡𝑖𝑗
𝑔
(𝑡) + 𝜏𝑖𝑗(𝑡))) + 𝛾𝑖 ⋅ (𝑣𝑖(𝑡) − 𝑣𝑗(𝑡 − 𝜏𝑖𝑗(𝑡)))]

 

(1) 

 

where 𝛿𝑡 is the length of each time step, 𝛼𝑖𝑗 denotes the value 

of adjacency matrix, 𝑘𝑖𝑗 and 𝛾𝑖 are control gains, 𝜏𝑖𝑗(𝑡) denotes 

the time-variant communication delay between two vehicles, 

and 𝑡𝑖𝑗
𝑔
(𝑡)  is the time-variant desired time gap between two 

vehicles. The advisory speed displayed on ASA system can be 

computed as 

 

𝑣𝑖(𝑡 + 𝛿𝑡) = 𝑣𝑖(𝑡) + 𝑎𝑟𝑒𝑓(𝑡 + 𝛿𝑡) ⋅ 𝛿𝑡    (2) 

 

where 𝑣𝑖(𝑡 + 𝛿𝑡) is the advisory speed shown to the driver, and 

𝑣𝑖(𝑡) is the current speed of the ego vehicle. 

B. HUD Design in the Game Engine 

A real-world on-ramp cooperative merging scenario is built 

in the Unity game engine as shown in Fig. 2. This particular 

267-meter on-ramp is modeled based on a realistic on-ramp in 

Mountain View, California, which connects E Middlefield Rd 

and California State Route 237 westbound. The red on-ramp 

vehicle tries to merge into the vehicle string on the main line, 

between those two dark blue vehicles. As can be seen from Fig. 

2, the on-ramp and the main line have different elevations (thus 

potentially obstructing the line of sight), so V2X-based ASA 

can provide the driver with helpful information regarding 

vehicles traveling on the other lane. 

In this study, the red on-ramp vehicle is controlled by the 

human driver on the driving simulator platform. As shown in 

Fig. 3, the driver of this vehicle is provided a HUD system, 

which is projected on the windshield right above the dashboard. 

HUD originates from a pilot being able to view information 

with the head positioned “up” and looking forward, instead of 

looking down at lower instruments. Although it was initially 

developed for military aviation, HUD is now widely used in 

commercial aircraft and automobiles. On production vehicles, 

HUD is usually enabled to offer speedometer, tachometer and 

navigation system displays [39]. 

The HUD design in this study is developed by the “Canvas” 

in Unity, which is a game object with a canvas component on 

it. All HUD elements, such as the speed information and vehicle 

indicator, are children of this canvas. The canvas is shown as a 

rectangle in the scene view of Unity, allowing us to easily 

position our HUD design on the windshield and right above the 

dashboard. Since we attach the game object canvas as a child of 

the game object ramp vehicle, the HUD design becomes the 

grandchild of the ramp vehicle and is fixed on that position of 

the windshield. 

Additionally, the preceding vehicle (with respect to the ego 

vehicle) is identified through V2X communication and the on-

board camera. It is marked with a “TARGET LEADER" 

indicator on top of its roof (which is also projected as HUD on 

the windshield), notifying the driver of which vehicle to follow 

during the merging process. Note that we also design the side 

mirrors and the rear-view mirror in the vehicle cabin, allowing 

the driver to observe vehicles running behind while conducting 

the merging behavior. 

 

 
Fig. 2. Cooperative merging scenario at on-ramp built in Unity. 

 
Fig. 3. Design of HUD-based ASA in Unity. 

C. Driver Inputs Based on ASA 

Once the advisory speed 𝑣𝑖(𝑡 + 𝛿𝑡) is computed by Eq. (2) 

and displayed to the driver by the aforementioned HUD design, 

the driver of the controlled on-ramp vehicle needs to input 

executions to Unity to track that advisory speed in the 

longitudinal direction, while keeping the vehicle at the center 

of the current lane. Therefore, we develop a vehicle controller 

to transfer driver lateral and longitudinal inputs into vehicle 

dynamics based on the game object “WheelCollider” in Unity. 

Basically, a “collider” in Unity defines the shape of an object 

for physical collisions. “WheelCollider” is a special “collider” 

designed for vehicles with wheels in Unity, which has built-in 

collision detection, wheel physics, and a slip-based tire friction 

model. Note that in the game engine we only model a simplified 

version of the vehicle powertrain, which can map the driver’s 

lateral input to the steering angle of vehicle’s front wheels, and 

map the driver’s longitudinal input to the rotational speed of 

vehicle’s two or four wheels. 

1) Driver Lateral Input 

The steering input of the vehicle is denoted as 𝑢𝑥 ∈ [−1,1], 
which allows two front wheels to steer along the local x-axis in 

Unity. The steering angle 𝜃 can be calculated by 

 

𝜃 = 𝜃𝑚𝑎𝑥 ⋅ 𝑢𝑥         (3) 

 
where 𝜃𝑚𝑎𝑥 is the user-defined maximum steering angle of the 

front wheels. The steering m angle 𝜃 can then be passed to the 

front wheels to steer the vehicle by the 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

5 

“WheelColliders[𝑖].steerAngle = 𝜃” command in Unity’s C# 

scripting API, where 𝑖 = 0,1 denotes the front left and right 

wheels. 
2) Driver Longitudinal Input 

The throttle or brake inputs of the vehicle is denoted as 𝑢𝑦 ∈

[−1,1], which allows the vehicle to move along the local y-axis 

by thrust/brake torque, generated by its two wheels (if the 

vehicle is either front-wheel drive or rear-wheel drive) or all 

four wheels (if the vehicle is four-wheel drive). When 𝑢𝑦 ∈

(0,1], it is considered as the driver stepping on the accelerator 

pedal. Alternatively, the driver is assumed to step on the brake 

pedal when 𝑢𝑦 ∈ [−1,0). 

The thrust 𝜏𝑡ℎ𝑟𝑢𝑠𝑡 and brake torque 𝜏𝑏𝑟𝑎𝑘𝑒  can be calculated 

by 

 

𝜏𝑡ℎ𝑟𝑢𝑠𝑡 =
𝜏𝑡𝑚𝑎𝑥

𝑛𝑤ℎ𝑒𝑒𝑙𝑠
⋅ 𝑢𝑦, 𝑖𝑓𝑢𝑦 ∈ [0,1]     (4) 

𝜏𝑏𝑟𝑎𝑘𝑒 = 𝜏𝑏𝑚𝑎𝑥 ⋅ 𝑢𝑦 , 𝑖𝑓𝑢𝑦 ∈ [−1,0)    (5) 

 

where 𝜏𝑡𝑚𝑎𝑥 denotes the full thrust torque of the vehicle over 

all wheels, 𝜏𝑏𝑚𝑎𝑥  denotes the full brake torque of each wheel, 

𝑛𝑤ℎ𝑒𝑒𝑙𝑠 = 2 if the vehicle is either front-wheel drive or rear-

wheel drive, and 𝑛𝑤ℎ𝑒𝑒𝑙𝑠 = 4 if the vehicle is four-wheel drive. 
These two equations are built on the assumptions that the thrust 

torque can be distributed to all wheels evenly, and there is no 

kinetic energy loss in the whole process (for both thrust and 

brake). 

The thrust torque 𝜏𝑡ℎ𝑟𝑢𝑠𝑡 can then be passed to the wheels to 

accelerate the vehicle by the “WheelColliders[𝑖].motorTorque 

= 𝜏𝑡ℎ𝑟𝑢𝑠𝑡 ” command in the scripting API, where 𝑖 = 0,1,2,3 

denotes the front left, front right, rear left and rear right wheels, 

respectively. Similarly, the brake torque 𝜏𝑏𝑟𝑎𝑘𝑒  can be passed 

to each wheel to decelerate the vehicle by the 

“WheelColliders[ 𝑖 ].brakeTorque = 𝜏𝑏𝑟𝑎𝑘𝑒 ” command in the 

scripting API. 

IV. LEARNING-BASED DRIVER BEHAVIOR MODELING 

In this section, we introduce a learning-based approach to 

modeling driver behavior and hence predicting the speed 

tracking errors. In the offline training phase, by learning the 

behavior of different drivers based on historical data, we cluster 

drivers into 𝑁 types and train 𝑁 neural networks. In the online 

learning phase, a driver will be classified into one of the preset 

types and assigned to the associated neural network according 

to his/her driving style within a certain time horizon. In the 

closed loop, once the neural network takes the speed tracking 

errors as inputs, it predicts the driving error in the next time 

step. Then the advisory speed calculated by the merging 

algorithm can be compensated by the error prediction module, 

thus shown on HUD. 

A. Driver Data Generation 

The human-in-the-loop simulation is conducted to allow 

volunteer drivers to test the HUD design in Unity, so training 

data for the driver type clustering can be generated. We also 

compare these results with the ones generated when ASA is 

disabled. Since Unity provides easy access for users to switch 

their gaming inputs among keyboard, mouse and joystick, it is 

we can integrate the plug-and-play feature in the test platform. 

As shown in Fig. 4, a driving simulator platform is built based 

on a Windows desktop (processor Intel Core i7-7700K @ 4.20 

GHz, memory 64.0 GB), Unity (version 2018.3.12f), and a 

Logitech G27 Racing Wheel (model W-U0001). 

 

 

Fig. 4. Driving simulator platform built on Logitech Racing Wheel and 

Unity. 

We invite 17 volunteers with real-world driving experience 

to participate in this human-in-the-loop simulation. To reduce 

any system biases in the simulation results, volunteers are 

chosen from various backgrounds: 1 senior driver (age > 50), 2 

mid-age drivers (30 < age <= 50), and 14 young drivers (age 

<= 30); 15 male drivers and 2 female drivers. The drivers are 

guided to try their best to follow ASA during the simulation, so 

that the ego vehicle can perform the cooperative merging 

maneuvers in a smoother way compared to the scenario when 

no ASA is provided. 

At the very beginning, each volunteer drives the vehicle on 

the simulator multiple times to collect data for training. Note 

that two different merging scenarios are developed in Unity, 

where the driver is randomly asked to drive either the ramp 

vehicle or the mainline vehicle. Additionally, only one 

volunteer at a time is allowed to enter the room of the simulator. 

Therefore, the volunteer will not have any prior knowledge 

regarding the traffic scenario, so his/her driving behavior totally 

depends on how well he/she can track the HUD-based ASA. 

B. Driver Type Clustering and Classification 

This subsection aims to cluster the test subjects into different 

types according to the similarity of their driver behavior. For 

the observation of speed, four variables are measured during 

each run. 

• The variance of speed (𝜎𝑣) describes the stability of the 

driving. 

• The mean error of speed (𝜇∆𝑣
) is the average difference 

between the advisory speed and actual speed, which 

evaluates the execution ability of the driver. Also, it 

distinguishes the driver who is always slower than the 

advisory speed from the driver who always exceeds the 

advisory speed. 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

6 

• The absolute mean error of speed ( |𝜇∆𝑣
| ) avoids 

misclassifying the driver who has a small mean error of 

speed, but actually drives pretty aggressively. 

• The variance of the speed error (𝜎∆𝑣
) is the variance of the 

difference between the advisory speed and the actual 

speed, implying the stability of the driver’s execution. 

Similarly, five variables in the observation of acceleration are 

also measured, including: 

• The variance of acceleration (𝜎𝑎). 

• The mean error of acceleration (𝜇∆𝑎
). 

• The absolute mean error of acceleration (|𝜇∆𝑎
|). 

• The variance of the acceleration error (𝜎∆𝑎
). 

• The mean of acceleration (𝜇𝑎). 

Since the number of driver type is not strictly defined in this 

study, an unsupervised learning approach is used to cluster the 

driver. The pseudocode of this HCA is stated as Algorithm 1. 

The Euclidean distance and Ward linkage method, which are 

both HCA methods, are adopted to create a hierarchical cluster 

tree for clustering. 

We combine each driver’s data as a matrix 𝑋, 𝑋= {𝑋1 ,..., 

𝑋𝑖 ,..., 𝑋𝑛}, where 𝑋𝑖  = {𝜎𝑣 , 𝜇∆𝑣
, |𝜇∆𝑣

|, 𝜎𝛿𝑣
, 𝜇∆𝑎

, 𝜇𝑎 , |𝜇∆𝑎
|, 𝜎𝑎 , 

𝜎∆𝑎
}, and compute the Euclidean distance matrix 𝐷 as 

 

𝐷 =

[
 
 
 
 

0 𝐷12 ⋯ 𝐷1𝑛−1 𝐷1𝑛

𝐷21 0 … 𝐷2𝑛−1 𝐷2𝑛

⋮ ⋮ ⋱ ⋮ ⋮
𝐷𝑛−11 𝐷𝑛−12 … 0 𝐷𝑛−1𝑛

𝐷𝑛1 𝐷𝑛2 ⋯ 𝐷𝑛𝑛−1 0 ]
 
 
 
 

   (6) 

 

where 𝐷𝑖𝑗 = ∥∥𝑋𝑖 − 𝑋𝑗∥∥2

2
. 

 

 

 

Fig. 5. HCA cluster visualization in 3-D space. 

 

As explained in Algorithm 1, when the dendrogram is 

generated based on the similarity of each data sample, we cut 

the dendrogram by the median Euclidean distances among the 

samples to obtain the final clusters. After filtering out the outlier 

samples, all valid samples in the driver dataset are clustered into 

four major types. We adopt the Multidimensional Scaling 

(MDS) to display the driver type clustering result in 3-D space, 

which is shown in Fig. 5. Note that if more data samples are 

obtained, we might cluster them into more than these four types 

to achieve better performance. 

Once the clustering is finished, we need to explore useful 

features from the data to obtain a more precise model. For 

instance, to compensate for the human tracking errors, we 

identify the most contributing variables as the object for the 

neural network to predict. Moreover, in high dimensions, there 

is little difference between the nearest and the farthest neighbor 

for the k-nearest neighbors (k-NN) classification using 

Euclidean distance because of “the curse of dimensionality”, so 

we reduce the input variables for classification. As stated in 

Algorithm 2, PCA is used to transform these nine correlated 

variables into a set of linearly uncorrelated variables, which are 

called principal components. Note PCA is not utilized before 

the driver clustering since the computational burden is not 

bottlenecked by the clustering, and all the original variables are 

potentially helpful for the clustering. 

As stated in the 𝑛 × 9 matrix of driver’s data, we have nine 

types of features and 𝑛 data samples. Specifically, we propose 

Algorithm 2 to identify the important variables to predict the 

speed tracking errors. According to the analytical results of 

PCA, the first component solely contributes 74.76%, and the 

second one solely contributes 18.85%. Several criteria for 

deciding how many components should be chosen are given in 

[13]: (a) the “elbow” in visual interpretation plot, (b) 

meaningful percentage of variance (80-90%), and (c) 

interpretable components. To meet these three criteria, we keep 

the first two components. 

According to the correlation results, the variance of the speed 

errors (𝜎∆𝑣
)  has a good correlation with the first principal 

component, where 𝜎∆𝑣 ranks the highest in the correlation, and 

the variance of speed (𝜎𝑣) stands out among the others. Having 

a higher correlation with the first two principal components, 

speed-related variables contribute much more than the 

acceleration on the driving behavior, so predicting and 

compensating for the speed errors can have a significant 

improvement in the execution of the advisory speed. We also 

notice the variance of the acceleration errors (𝜎∆𝑎
) and the 

variance of acceleration (𝜎𝑎) play important roles, which can be 

considered as another two variables in the classification. 

Once we obtain these different clusters by HCA and find out 

the important features by PCA, we can classify drivers into 

those clusters based on their driving behaviors during the time 

horizon of 𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 . By proposing the k-NN algorithm (as stated 

in Algorithm 3), we classify the driver into the same type as 

those that share the similar driving behavior. 

 

Algorithm 1 HCA: Cluster the driving type 

Input: Matrix (𝑋) that contains 9 variables of driver behavior 

and 𝑛 samples. 

Output: 𝐾 clusters. 
 1：Compute the distance matrix. 

 2:   While the number of clusters > 1  

 3:              Merge two clusters with the smallest 𝐷𝑖𝑗; 

 4:              Update the distance matrix; 

 5:              Save 𝐷𝑖𝑗 and cluster ID in the stack; 

 6:              The number of clusters is cut in half; 

 7:   end       
 8:  Separate from one cluster into several clusters based on the median 

distance among recorded 𝐷𝑖𝑗 ; 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

7 

Algorithm 2 PCA: Identify the important variables 

Input: Matrix 𝑋  that contains nine variables of driver 

behavior.  

Output: 1) Accumulate percentage of singular value (POS). 

2) Correlation coefficients matrix. 

1: Normalize the data matrix; 

2: For each column 𝑋𝑗  in 𝑋, 𝑋𝑖 = 𝑋𝑖  − 𝜇(𝑋𝑖); 

3: Calculate the covariance matrix  

Kxx = COV[𝑋, 𝑋] = 𝐸[(𝑋 − 𝜇𝑥)(𝑋 − 𝜇𝑥)
𝑇]; 

4: Calculate the singular values  Σ and singular vector V, based on 

Kxx = 𝑉Σ2𝑉𝑇; 

5: Arrange Σ in descending order POS = 
Σ𝑖

𝑠𝑢𝑚(Σ)
; 

6: Calculate the correlation matrix (factor loading) R; 

 

Algorithm 3 k-NN: Classify the new driver  

Input: 1) The speed trajectory of the driver during the time 

horizon 𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦 . 2) Sample data of clustered drivers. 3) The 

number of neighbors to be considered. 

Output: The type of the user.  

1：Compute the data matrix 𝑋 which contains the nine variables, 

where 𝑋𝑖 = {𝜎𝑣,𝜎∆𝑣 , 𝜎𝑎,𝜎∆𝑎};  

2: Compute the similarity between the driver and all other 

previous drivers, where Si=  ‖𝑋 − 𝑋𝑖‖2
2; 

3: Rank 𝑆 and pick out the top 𝑘 samples; 

4: Do majority-voting  

For 𝑘 samples  

   If (sample = type1): {type1.VOTE +1} 

   Else: {type2.VOTE +1}  

End 

If (type1.VOTE >= type2.VOTE): {Type = Type 1}  

  Else: Type = Type 2  

 

C. Training the Nonlinear Autoregressive (NAR) Neural 

Network 

Once all historical data generated by various drivers are 

clustered, neural network is trained to predict driver behavior. 

The speed errors generated from the driver when tracking ASA 

can be considered as a time series with high variations. Since it 

is generally difficult to model a time series using a linear model, 

we adopt the NAR neural network [40] in this study. It has been 

proved by Lapedes and Farber [41] that, time series can always 

be modeled by the following NAR model 

 

�̂�(𝑡 + 𝛿𝑡) = 𝑓{𝑦(𝑡), 𝑦(𝑡 − 𝛿𝑡), 𝑦(𝑡 − 2𝛿𝑡), … , 𝑦(𝑡 − (𝜏 −
1) × 𝛿𝑡)} (7) 

 
where 𝛿𝑡 denotes a time step, and the speed tracking error 𝑦 at 

time 𝑡 + 𝛿𝑡 is predicted using 𝜏 past values of the series. The 

structure of the NAR network can be seen as Fig. 6. To 

approximate the unknown function 𝑓(⋅), the neural network is 

trained by means of the optimization of network weights 𝑤’s 

and neuron biases 𝑏 ’s. The numbers of hidden layers and 

neurons per layer are completely flexible, which can be 

optimized through a trial-and-error process. Note that more 

neurons may complicate the system, but less neurons may 

restrict the generalization capability and computing power of 

the network. 

 

 

Fig. 6. Structure of NAR neural network. 

In this study, to train the series of speed error data, we set the 

number of hidden layers as 2, and the number of hidden neurons 

as 10. The number of delays 𝜏 is set to 2, which means a total 

of 3 values of the speed tracking errors are used to predict the 

value at the next time step. The Levenberg-Marquardt 

backpropagation procedure (LMBP) is implemented as the 

learning rule of this NAR network [42]. LMBP is considered 

one of the fastest backpropagation-type algorithms, since it was 

designed to approximate the second-order derivative without 

computing the Hessian Matrix. The training process is 

conducted on the Windows desktop with processor Intel Core 

i7-7700K @ 4.20 GHz and 64.0 GB memory. 

We evaluate our training result using the Mean Squared Error 

(MSE), which is the average squared difference between 

predictions and targets, and the Regression (R) value, which is 

a measurement of the correlation between output predictions 

and targets. For MSE, a lower value stands for a better result 

where zero means no error. A higher R value means a stronger 

correlation between the prediction and target, while zero stands 

for a random relationship. We pick two biggest clusters out of 

those four shown in Fig. 5, and split 70% for training, 15% for 

validation, and another 15% for testing. As shown in the 

TABLE I, two neural networks are trained with high 

performance, since their MSE values are lower than 0.02 and R 

values are higher than 0.99. 

 

 
Once the neural networks are completely trained, they can be 

implemented in an online manner as shown in Fig. 1. At every 

time step, the trained neural network (configured as a 

MATLAB script) takes multiple inputs through the UDP socket 

from either the game engine or the vehicle, computes the 

predicted speed error at the next time step, and sends it back 

through the UDP socket. Once the predicted speed error is 

received, it will then be compensated for the original advisory 

speed algorithm Eq. (2) by 

 

TABLE I 

TRAINING RESULT OF NAR NEURAL NETWORK 

Data Set Catalog Target Values MSE R 

Driver 
Type 1 

Training 20512 0.0147 0.9906 

Validation 4396 0.0067 0.9959 

Testing 4396 0.0073 0.9956 

Driver 

Type 2 

Training 8330 0.0166 0.9929 
Validation 1785 0.0140 0.9939 

Testing 1785 0.0191 0.9953 

 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

8 

�̂�𝑖(𝑡 + 𝛿𝑡) = 𝑣𝑖(𝑡) + 𝑎𝑟𝑒𝑓(𝑡 + 𝛿𝑡) ⋅ 𝛿𝑡 + �̂�(𝑡 + 𝛿𝑡)    (8) 

 
where �̂�(𝑡 + 𝛿𝑡) is the predicted error term compensated for 

the advisory speed. This compensated advisory speed �̂�𝑖(𝑡 +
𝛿𝑡) is the value that is eventually displayed to the driver. 

V. RESULTS OF HUMAN-IN-THE-LOOP SIMULATION USING 

GAME ENGINE 

As stated in the previous section, 17 volunteer drivers were 

invited to train the NAR neural network in the offline training 

phase, so the data they generate are considered as “historical 

data by various drivers” in Fig. 1. However, since the proposed 

driver behavior modeling methodology is for unknown drivers, 

we invite another five drivers to test the system in the online 

actuation phase. Each driver conducts eight simulation trips, so 

a total of 40 runs are recorded for evaluation.1 

Two out of those 40 speed trajectories generated by human-

in-the-loop simulation runs are selected to conduct an 

illustrative comparison in Fig. 7, and a better tracking of the 

advisory speed is observed after implementing the proposed 

model in general. Note for all speed trajectory figures in this 

study including Fig. 7 (a), Fig. 7 (b), Fig. 9 (a) and Fig. 9 (b): 

At the same time step, the advisory speed is first generated, the 

compensated advisory speed is the second (if there is one), and 

the actual speed is the last. They are not generated at the same 

time, as illustrated in the system workflow in Fig. 1. 

As shown in Fig. 7 (a), there is a large speed difference 

(which indicates a poor speed tracking behavior) at the 

beginning of the 30-second simulation run, when there is no 

error prediction model. During this whole run, the red solid line 

and the dark blue dashed line are not well aligned with each 

other, indicating that the actual speed generated by the driver 

deviates from the advisory speed generated by Eq. (2) all the 

time. 

However, as shown in Fig. 7 (b), the light blue dotted line 

denotes the compensated advisory speed calculated by Eq. (8), 

which predicts driver behavior based on his/her previous 

driving inputs. For example, at time 7 s, the actual speed (23 

m/s) is lower than the advisory speed (21 m/s), so the speed 

tracking error is -2 m/s. This value along with the values of two 

previous time steps are the time series inputs of the neural 

network. The neural network then outputs the prediction speed 

tracking error at the next time step, which is -3 m/s. This 

predicted error is added to the advisory speed at time 8 s, so the 

compensated advisory speed at 8 s is (20 – 3 =) 17 m/s. With 

the help of the compensated advisory speed, the speed errors 

are shown to be attenuated during 6-10 s. 

In general, with the compensated advisory speed calculated 

by the error prediction model, the driver can track the advisory 

speed more precisely than without it, since the red line and the 

dark blue line are generally closer and less fluctuated in Fig. 7 

(b) than Fig. 7 (a). As shown in Fig. 1, the compensated 

advisory speed is only adopted in the loop for display purpose, 

 
1 The human-in-the-loop simulations are filmed and uploaded to the Internet, 

where the HUD-based ASA design in Unity can be watched at 

https://youtu.be/RtrBonGGobg, while the testing of the driving simulator 

where the speed tracking errors are still calculated by the 

difference between the actual speed and the advisory speed. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 7. Speed error comparison in the game engine-based simulation. 

As for the quantitative comparison, we evaluate three 

different indexes for all 40 runs (with and without the error 

prediction model) conducted by five drivers. Those three 

indexes include the mean speed error 𝜇𝛿𝑣
, the mean value of the 

absolute speed error |𝜇𝛿𝑣
|, as well as the variance of the speed 

error 𝜎𝛿𝑣
. As shown in Fig. 7 (c), the mean speed error benefits 

the least from implementing the error prediction model 

compared to the other two indexes, with a 23.4% reduction of 

this index. However, if we take an absolute value of the speed 

error first, a 36.2% reduction of the index can be observed, 

which outperforms the previous one. The underlying reason is 

that, the absolute calculation filters out the situations when the 

speed errors are bouncing up and down, and positive values 

offset negative values so the mean values turn out to be 

relatively small. 

As a matter of fact, the speed error variance results in Fig. 7 

(c) prove the effectiveness of the proposed driver behavior 

model in an even better way. As shown in the results, the speed 

error variance is 9.6464 before the error prediction model is 

implemented, and is cut by half to 4.5661 after the 

implementation. This 52.7% drop in speed error variance shows 

that drivers are capable of tracking the advisory speed more 

closely after the driver behavior model is implemented. 

platform (where the data are not used for training and evaluation) can be 
watched at https://youtu.be/ZgJ_VGuvvz4. 

https://youtu.be/RtrBonGGobg
https://youtu.be/ZgJ_VGuvvz4


IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

9 

Additionally, we also utilize the U.S. Environmental 

Protection Agency’s MOtor Vehicle Emission Simulator 

(MOVES) model to perform analysis on the environmental 

impacts of the proposed model based on all human-in-the-loop 

simulation runs [43]. As can be seen from TABLE II, the 

pollutant emissions can be reduced by up to 6.3% after 

implementing the driver behavior model, and the energy 

consumption can be reduced by 2.5%, respectively. 

 

VI. REAL VEHICLE FIELD IMPLEMENTATION 

In order to validate the proposed game engine-based driver 

behavior modeling approach, we adopt a real passenger vehicle 

with automatic transmission to conduct the real-world 

implementation, which is shown in Fig. 8. The vehicle is 

equipped with a Windows laptop (processor Intel Core i5-

7200U @ 2.50 GHz, 16.0 GB memory) that has access to OBD-

II port messages, and also wirelessly connects to an Android 

tablet which displays ASA to the driver. HMI is designed as 

Fig. 8, showing the current speed (left) and advisory speed 

(right) to the driver. This HMI-based ASA is the counterpart of 

the HUD-based ASA from the game engine-based simulation. 

 

 
Fig. 8. A driver is tracking ASA on HMI in a real passenger vehicle. 

Although we still perform the same cooperative merging 

scenario described as Fig. 2, the speed trajectory of the mainline 

leading vehicle is virtually generated for the cooperative 

merging maneuvers to minimize the system uncertainties. The 

driver only needs to focus on tracking the advisory speed shown 

on the HMI-based ASA and validates the effectiveness of the 

proposed error prediction model. The parameters of the real 

vehicle implementation are set the same as the human-in-the-

loop simulation, which are shown in TABLE III. 

Two out of the ten speed trajectories of the real vehicle 

implementation are selected to conduct the illustrative 

comparison, which are shown in Fig. 9 (a) and (b), respectively. 

Coinciding with the simulation result, without the error 

prediction model, a relatively large gap between the advisory 

speed and actual speed can be observed during the 60-second 

test run in Fig. 9 (a). However, with the compensated advisory 

speed calculated by the error prediction model, the driver can 

track the advisory speed more precisely in Fig. 9 (b). Similar to 

Fig. 7 (b), the light blue dotted line in Fig. 9 (b) illustrates the 

compensated advisory speed calculated by Eq. (8), which 

successfully predicts driver behavior based on his/her previous 

driving inputs. The red line and the dark blue line are generally 

closer and less fluctuating in Fig. 9 (b) than in Fig. 9 (a). 

 

 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Speed error comparison in the real vehicle implementation. 

Fig. 9 (c) shows that the values of the three indexes are 

reduced by implementing the error prediction model for all ten 

runs, which means the real-world implementation validates the 

results of our game engine-based simulation. Specifically, after 

compensating the speed tracking errors, a reduction of 20.0% 

in terms of the speed error variance, and a reduction of 3.5% in 

terms of the absolute value of average speed error can be 

TABLE II 
ENERGY CONSUMPTION AND POLLUTANT EMISSION RESULTS OF HUMAN-IN-

THE-LOOP SIMULATION (ALL VALUES ARE ON A KILOMETER BASIS) 

 
CO 

(g) 

HC 

(g) 

NOX 

(g) 

CO2 

(g) 

Energy 

(KJ) 

Baseline 2.54 0.0175 0.05721 275.1 3867 

Proposed 2.43 0.0167 0.05359 268.2 3770 

Reduction 4.3% 4.6% 6.3% 2.5% 2.5% 

 

TABLE III 

PARAMETER SETUP OF THE REAL VEHICLE VALIDATION 

Parameters Host vehicle Virtual vehicle 

GPS antenna to front bumper 2 m - 

GPS antenna to rear bumper 2.9 m - 

Initial speed 4.4 m/s (10 mph) 20 m/s (45 mph) 

Advisory speed - 20 m/s (45 mph) 

Desired acceleration range ±2 m/s2 0 

Speed limit for advisory speed 24.4 m/s (55 mph) - 

Initial intervehicle distance 20 m 

Initial time gap 4 s 
Desired time gap 0.5 s 

Control gains 
Speed  5 

Distance 1 

Minimum intervehicle gap 2 m 

Time duration 55 to 60 s 

Communication rate 10 Hz 

 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

10 

obtained, respectively, compared to the baseline scenario when 

no guidance is provided. 

TABLE IV shows the environmental impacts of the proposed 

driver behavior model in the real vehicle implementation after 

implementing the MOVES model. A reduction up to 16.3% in 

pollutant emissions and a reduction of 7.2% in energy 

consumption can be obtained after implementing the proposed 

model, respectively. 

 

 

VII. CONCLUSIONS AND FUTURE WORK 

In this study, an ASA system was implemented in the Unity 

game engine to show an advisory speed to the driver of an 

intelligent vehicle. A learning-based approach was proposed to 

predict and compensate for the speed tracking errors generated 

by different drivers. The effectiveness of the proposed approach 

in predicting and compensating for the speed tracking errors 

was validated by the human-in-the-loop game engine-based 

simulation, which showed a 53% reduction in speed error 

variance and a 3% reduction in energy consumption, 

respectively. A real-world implementation with a real 

passenger vehicle further confirmed the performance of the 

proposed system. 

The proposed driver behavior model is shown to improve the 

speed tracking capabilities of drivers in both game engine-

based simulation and real vehicle implementation. However, 

based on the quantitative speed error results in Fig. 7 (c) and 

Fig. 9 (c), as well as the environmental results in TABLE II and 

TABLE IV, the extents of improvement in these two platforms 

are quite different. Several potential factors might lead to such 

differences: 

• Vehicle dynamics and powertrain models are far more 

complex in the real vehicle than what are modeled in the 

game engine. 

• Game engine-based scenarios are well defined, while real-

world implementations have more uncertainties, even if they 

share the same parameter settings. 

• Groups of volunteer drivers for the game engine-based 

simulation and the real-world implementation are not 

identical, which may cause some biases. 

A major future step of this study is to invite more volunteer 

drivers to conduct more test runs on the driving simulator 

platform as well as the real passenger vehicle, since the 

precision of the proposed learning-based approach is heavily 

dependent on the amount of training data. Another extension of 

this study is to implement the proposed ASA to other traffic 

scenarios besides cooperative ramp merging, such as eco-

approach and departure, speed harmonization, etc. 

ACKNOWLEDGMENT 

This research was funded by the “Digital Twin” project of 

Toyota Motor North America, InfoTech Labs. We are grateful 

to Dr. Xuewei Qi and Dr. Peng Wang for providing their 

insights, and all the volunteers at the University of California, 

Riverside for their contributions in the human-in-the-loop 

simulation and real-world implementation. 

The contents of this paper only reflect the views of the 

authors, who are responsible for the facts and the accuracy of 

the data presented herein. The contents do not necessarily 

reflect the official views of Toyota Motor North America, 

InfoTech Labs. 

REFERENCES 

[1] J. Piao and M. McDonald, “Advanced driver assistance systems from 
autonomous to cooperative approach,” Transport reviews, vol. 28, no. 5, 

pp. 659–684, 2008. 

[2] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of 
pedestrian detection for advanced driver assistance systems,” IEEE 

Transactions on Pattern Analysis & Machine Intelligence, vol. 32, no. 7, 
pp. 1239–1258, 2009. 

[3] G. Hegeman, K. Brookhuis, and S. Hoogendoorn, “Opportunities of 

advanced driver assistance systems towards overtaking,” European 
Journal of Transport and Infrastructure Research EJTIR, 5 (4), 2005. 

[4] A. Vahidi and A. Eskandarian, “Research advances in intelligent collision 

avoidance and adaptive cruise control,” IEEE Transactions on Intelligent 
Transportation Systems, vol. 4, no. 3, pp. 143–153, 2003. 

[5] N. Van Nes, M. Houtenbos, and I. Van Schagen, “Improving speed 
behaviour: the potential of in-car speed assistance and speed limit 

credibility,” IET Intelligent Transport Systems, vol. 2, no. 4, pp. 323–330, 
2008. 

[6] Z. Wang, Y.-P Hsu, A. Vu, F. Caballero, P. Hao, G. Wu, K. 

Boriboonsomsin, M. J. Barth, A. Kailas, P. Amar, E. Garmon, and S. 
Tanugula, “Early findings from field trials of heavy-duty truck connected 

eco-driving system,” in 22th International IEEE Conference on 
Intelligent Transportation Systems (ITSC), 2019. 

[7] P. Hao, K. Boriboonsomsin, C. Wang, G. Wu, and M. J. Barth, 

“Connected eco-approach and departure (EAD) system for diesel trucks,” 
in Transportation Research Board 97th Annual Meeting, 2018. 

[8] X. Qi, P. Wang, G. Wu, K. Boriboonsomsin, and M. J. Barth, “Connected 

cooperative ecodriving system considering human driver error,” IEEE 
Transactions on Intelligent Transportation Systems, vol. 19, no. 8, pp. 
2721–2733, 2018. 

[9] C. M. Martinez, M. Heucke, F. Wang, B. Gao, and D. Cao, “Driving style 
recognition for intelligent vehicle control and advanced driver assistance: 

A survey,” IEEE Transactions on Intelligent Transportation Systems, 
vol. 19, no. 3, pp. 666–676, 2018. 

[10] Y. L. Murphey, R. Milton, and L. Kiliaris, “Driver’s style classification 

using jerk analysis,” in 2009 IEEE Workshop on Computational 
Intelligence in Vehicles and Vehicular Systems, March 2009, pp. 23–28. 

[11] V. Butakov and P. Ioannou, “Personalized driver assistance for signalized 

intersections using V2I communication,” IEEE Transactions on 
Intelligent Transportation Systems, vol. 17, no. 7, pp. 1910–1919, 2016. 

[12] S. Schnelle, J. Wang, H. Su, and R. Jagacinski, “A driver steering model 
with personalized desired path generation” IEEE Transactions on Systems, 
Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 111–120, 2017. 

[13] Z. Constantinescu, C. Marinoiu, and M. Vladoiu, “Driving style analysis 

using data mining techniques,” International Journal of Computers 
Communications & Control, vol. 5, no. 5, pp. 654–663, 2010. 

[14] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, K. Takeda, 

and F. Itakura, “Driver modeling based on driving behavior and its 

evaluation in driver identification,” Proceedings of the IEEE, vol. 95, 
no. 2, pp. 427–437, 2007. 

[15] V. Butakov and P. Ioannou, “Personalized driver/vehicle lane change 
models for ADAS,” IEEE Transactions on Vehicular Technology, vol. 64, 
no. 10, pp. 4422–4431, 2015. 

TABLE IV 

ENERGY CONSUMPTION AND POLLUTANT EMISSION RESULTS OF REAL 

VEHICLE VALIDATION (ALL VALUES ARE ON A KILOMETER BASIS) 

 
CO 

(g) 

HC 

(g) 

NOX 

(g) 

CO2 

(g) 

Energy 

(KJ) 

Baseline 1.65 0.01424 0.0481 256.5 3605 

Proposed 1.51 0.01192 0.0399 237.9 3344 

Reduction 8.5% 16.3% 17.0% 7.3% 7.2% 

 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

11 

[16] J. C. McCall and M. M. Trivedi, “Driver behavior and situation aware 
brake assistance for intelligent vehicles,” Proceedings of the IEEE, 
vol. 95, no. 2, pp. 374–387, 2007. 

[17] A. Mudgal, S. Hallmark, A. Carriquiry, and K. Gkritza, “Driving 

behavior at a roundabout: A hierarchical bayesian regression analysis,” 

Transportation research part D: transport and environment, vol. 26, pp. 
20–26, 2014. 

[18] L. Xu, J. Hu, H. Jiang, and W. Meng, “Establishing style-oriented driver 

models by imitating human driving behaviors,” IEEE Transactions on 
Intelligent Transportation Systems, vol. 16, no. 5, pp. 2522–2530, 2015. 

[19] A. Augustynowicz, “Preliminary classification of driving style with 
objective rank method,” International Journal of Automotive Technology, 
vol. 10, no. 5, pp. 607–610, 2009. 

[20] Z. Wei, C. Wang, P. Hao, and M. J. Barth, “Vision-Based Lane-Changing 
Behavior Detection Using Deep Residual Neural Network,” in 22th 

International IEEE Conference on Intelligent Transportation Systems 
(ITSC), 2019. 

[21] C. Guardiola, B. Pla, D. Blanco-Rodrı́guez, and A. Reig, “Modelling 

driving behaviour and its impact on the energy management problem in 
hybrid electric vehicles,” International Journal of Computer Mathematics, 

vol. 91, no. 1, pp. 147–156, 2014. 

[22] X. Liu, A. Goldsmith, S. S. Mahal, and J. K. Hedrick, “Effects of 
communication delay on string stability in vehicle platoons,” in 2001 

International IEEE Conference on Intelligent Transportation Systems 
(ITSC), 2001, pp. 625–630. 

[23] S. Lefevre, A. Carvalho, and F. Borrelli, “A learning-based framework 

for velocity control in autonomous driving,” IEEE Transactions on 
Automation Science and Engineering, vol. 13, no. 1, pp. 32–42, 2016. 

[24] W. Wang, J. Xi, and D. Zhao, “Learning and inferring a driver’s braking 
action in car-following scenarios,” IEEE Transactions on Vehicular 
Technology, vol. 67, no. 5, pp. 3887–3899, 2018. 

[25] W. Wang, D. Zhao, W. Han, and J. Xi, “A learning-based approach for 
lane departure warning systems with a personalized driver model,” IEEE 

Transactions on Vehicular Technology, vol. 67, no. 10, pp. 9145–9157, 
2018. 

[26] Z. Wang, G. Wu, K. Boriboonsomsin, M. J. Barth, K. Han, B. Kim, and 

P. Tiwari, “Cooperative ramp merging system: Agent-based modeling 

and simulation using game engine,” SAE International Journal of 
Connected and Automated Vehicles, vol. 2, no. 2, 2019. 

[27] M. Yamaura, N. Arechiga, S. Shiraishi, S. Eisele, J. Hite, S. Neema, 
J. Scott, and T. Bapty, “ADAS virtual prototyping using modelica and 

unity co-simulation via openmeta,” in The First Japanese Modelica 

Conferences, May 23-24, Tokyo, Japan, no. 124. Linköping University 
Electronic Press, 2016, pp. 43–49. 

[28] B. Kim, Y. Kashiba, S. Dai, and S. Shiraishi, “Testing autonomous 
vehicle software in the virtual prototyping environment,” IEEE Embedded 
Systems Letters, vol. 9, no. 1, pp. 5–8, 2017. 

[29] LG Electronics America R&D Center, “LGSVL simulator,” 2019-04-28. 
[Online]. Available: https://www.lgsvlsimulator.com 

[30] Unity, “Unity for all,” 2020-02-29. [Online]. Available: 
https://www.unrealengine.com 

[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: 
An open urban driving simulator,” arXiv preprint arXiv:1711.03938, 
2017. 

[32] Epic Games, “Unreal engine,” 2019-04-28. [Online]. Available: 
https://www.unrealengine.com 

[33] Tass International, “PreScan”, 2019-08-15. [Online]. Available: 
https://tass.plm.automation.siemens.com/prescan 

[34] Mechanical Simulation, “CarSim”, 2019-08-15. [Online]. Available: 
https://www.carsim.com/ 

[35] J. Ma, X. Li, S. Shladover, H. A. Rakha, X. Lu, R. Jagannathan, and D. J. 
Dailey, “Freeway speed harmonization,” IEEE Transactions on Intelligent 
Vehicles, vol. 1, no. 1, pp. 78–89, Mar. 2016. 

[36] B. Xu, S. E. Li, Y. Bian, S. Li, X. J. Ban, J. Wang, and K. Li, “Distributed 
conflict-free cooperation for multiple connected vehicles at unsignalized 
intersections,” Transportation Research Part C: Emerging Technologies, 
vol. 93, pp. 322–334, 2018. 

[37] Z. Wang, K. Han, B. Kim, G. Wu, and M. J. Barth, “Lookup table-based 

consensus algorithm for real-time longitudinal motion control of 

connected and automated vehicles,” in 2019 American Control 
Conference (ACC), pp. 5298–5303, 2019. 

[38] Z. Wang, G. Wu, and M. Barth, “Distributed consensus-based 

cooperative highway on-ramp merging using V2X communications,” in 

SAE Technical Paper, Apr. 2018. [Online]. Available: 
https://doi.org/10.4271/2018-01-1177 

[39] B.-W. Yang, “Head-up display for automobile,” Mar. 1997, US Patent 
5615023. 

[40] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall 
PTR, 1994. 

[41] A. Lapedes and R. Farber, “Nonlinear signal processing using neural 
networks: Prediction and system modelling,” LA-UR-87-2662; CONF-
8706130-4; ON: DE88006479, Tech. Rep., 1987. 

[42] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear 

parameters,” Journal of the society for Industrial and Applied 
Mathematics, vol. 11, no. 2, pp. 431–441, 1963. 

[43] U.S. Environmental Protection Agency, “MOVES2014a User Guide,” 
Nov. 2015. 

 

 

Ziran Wang (S’16-M’19) received the 

Ph.D. degree in mechanical engineering 

from the University of California at 

Riverside in 2019, and the B.E. degree in 

mechanical engineering and automation 

from Beijing University of Posts and 

Telecommunications in 2015, respectively. 

He is currently a Research Scientist at 

Toyota Motor North America R&D, 

InfoTech Labs. His research focuses on cooperative automation 

and digital twin of intelligent vehicles. 

 

 

Xishun Liao (S’19) received the B.E. 

degree in mechanical engineering and 

automation from Beijing University of 

Posts and Telecommunications in 2016, 

and the M.Eng. degree in mechanical 

engineering from University of Maryland, 

College Park in 2018. He is currently a 

Ph.D. student in electrical and computer 

engineering at the University of California 

at Riverside. His research focuses on connected and automated 

vehicle technology. 

 

 

Chao Wang (S’15) received the B.S. 

degree in electrical engineering from 

Huazhong University of Science and 

Technology in 2015. He is currently a 

Ph.D. candidate in electrical engineering at 

University of California at Riverside. His 

research interests include urban 

computing, crowdsourced transportation 

data mining, sharing mobility, connected 

and automated vehicles, machine learning and deep learning, 

eco-approach and departure, signal control and traffic 

operations.  

 

 

https://tass.plm.automation.siemens.com/prescan
https://www.carsim.com/


IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, EARLY ACCESS 

 

 

12 

David Oswald received the B.S. degrees in 

mathematics and computer engineering 

from the California State University 

Bakersfield in 2013, and the M.S. degree in 

electrical engineering from the California 

State University Northridge in 2017. He is 

currently pursuing the Ph.D. in electrical 

engineering from the University of 

California at Riverside, Riverside. His current research involves 

connected and automated vehicles. 

 

 
Guoyuan Wu (M’09-SM’15) received the 
Ph.D. degree in mechanical engineering 
from the University of California at 
Berkeley in 2010. He is currently an 
Associate Research Engineer with the 
Transportation Systems Research Group, 
Center for Environmental Research and 
Technology, Bourns College of 
Engineering, University of California, 

Riverside, USA. Dr. His research focuses on intelligent and 
sustainable transportation system technologies, optimization 
and control of transportation systems, and traffic simulation. 
 
 

Kanok Boriboonsimsin (M’15) received 
the Ph.D. degree in transportation 
engineering from the University of 
Mississippi in 2004. He is currently a 
Research Engineer with the Center for 
Environmental Research and Technology, 
College of Engineering, University of 
California at Riverside. His research 
interests include sustainable transportation 

systems and technologies, intelligent transportation systems, 
traffic simulation, traffic operations, transportation modeling, 
vehicle emissions modeling, and vehicle activity analysis. 
 
 

Matthew J. Barth (M’90-SM’00-F’14) 
received the M.S. and Ph.D degree in 
electrical and computer engineering from 
the University of California at Santa 
Barbara, in 1985 and 1990, respectively. 
He is currently the Yeager Families 
Professor with the College of Engineering, 
University of California at Riverside, 
USA. He is also serving as the Director for 

the Center for Environmental Research and Technology. His 
current research interests include ITS and the environment, 
transportation/emissions modeling, vehicle activity analysis, 
advanced navigation techniques, electric vehicle technology, 
and advanced sensing and control. Dr. Barth has been active in 
the IEEE Intelligent Transportation System Society for many 
years, serving as Senior Editor for both the Transactions of ITS 
and the Transactions on Intelligent Vehicles. He served as the 
IEEE ITSS President for 2014 and 2015 and is currently the 
IEEE ITSS Vice President for Finance. 

 

 

Kyungtae (KT) Han (M’97-SM’15) 
received the Ph.D. degree in electrical and 
computer engineering from The University 
of Texas at Austin in 2006. He is currently 
a Principal Researcher at Toyota Motor 
North America, InfoTech Labs. Prior to 
joining Toyota, Dr. Han was a Research 
Scientist at Intel Labs, and a Director in 
Locix Inc. His research interests include 

cyber-physical systems, connected and automated vehicle 
technique, and intelligent transportation systems. 

 

 
BaekGyu Kim (M'12) received the Ph.D. 
degree in computer and information 
science from the University of 
Pennsylvania in 2015. He is currently a 
Principal Researcher at Toyota Motor 
North America, InfoTech Labs. His 
research interests include modeling, 
verification, code generation and model-
based testing for high-assurance systems. 

 

 

Prashant Tiwari received the Ph.D. 

degree in mechanical engineering from 

Rensselaer Polytechnic Institute in 2004, 

and the MBA degree from University of 

Chicago in 2016. He is currently an 

Executive Director at Toyota Motor North 

America, InfoTech Labs. Dr. Tiwari is 

highly active in Automotive Edge 

Computing Consortium (AECC) and SAE. 

Prior to joining Toyota, Dr. Tiwari held several leadership 

positions of increasing responsibilities at GE and UTC 

Aerospace Systems. 

View publication statsView publication stats

https://www.researchgate.net/publication/340511322

