

Understanding Air Quality Data, Traffic, and Weather Parameters Collected from Near-Road Stations Ayla Moretti^{1,2}, Jill Luo², Guoyuan Wu², Brandon Feenstra^{1,2}, Kanok Boriboonsomsin², Matthew Barth²

1. University of California, Riverside – Department of Chemical and Environmental Engineering – Center for Environmental Research and Technology (CE-CERT)

Introduction

Previous research studies have established relationships between air quality, and traffic and weather parameters based on hourly averaged data. In this study, we were able to obtain higher resolution (i.e., 5-minute averaged) measurement data of fine particulate matter $(PM_{2,5})$, nitric oxide (NO), nitrogen dioxide (NO₂), and nitrogen oxides (NO_x) from two near-road air monitoring stations managed by South Coast Air Quality Management District. The objective of this study is to gain a better understanding of the relationships between near-road pollutant concentrations and traffic speed, traffic flow, weather parameters, and time of day at a higher time resolution using four months worth of air quality measurement data.

Data Collection

Data was collected from January 2018 through April 2018 for the following locations:

Ontario SR-60 Near Road (60NR) Air Monitoring Station Located at 2330 S Castle Harbour Pl, Ontario, CA 91761; approximately 10 meters North of California State Route 60 (SR-60) between the Grove Ave and Vineyard Ave exits.

Long Beach I-710 Near Road (710NR) Air Monitoring Station Located at 5895 Long Beach Blvd. Long Beach, CA 90805; approximately 20 meters East of Interstate 710 (I-710) between the exits of W. Del Amo Boulevard and Long Beach Boulevard.

Satellite images of the SCAQMD near-roadway air monitoring stations selected for this study (Sources: Google Maps and PeMS)

Data Preparation

The raw data obtained from the near-road air monitoring stations and PeMS required further data processing: examining of outliers, averaging values, and removing missing values. The pearson correlation coefficients was calculated to examine the linear relationship between any two numerical variables. This was done to identify potential multicollinearity issues among the variables – the results indicated that the explanatory variables were not linearly related with each other.

Box-cox transformation was performed to transform non-normal concentration values to a normal-distribution shape. Lambda of 0.5 was applied for PM_{25} concentrations ($\mu g/m^3$) and 0.2 was applied for NO, and NO_x concentrations (ppb). The Box-cox transformation did not improve NO₂ distribution and therefore was not applied to NO_2 concentration values.

Modeling Method

Multiple Linear Regression (MLR)

MLR is the simplest multivariate regression method that models the linear relationship between the explanatory variables on the observed traffic, and weather parameters on $PM_{2,5}$, NO, NO₂, and NO_x concentration. The general equation for the MLR model can be written as:

$$y = \beta_0 + \sum_i \beta_i *$$

where y represents the estimated model output; β_0 is the intercept; β_i is the regression coefficient associated with the i-th variable; x_i is the value of the i-th variable; and ε_i is an independent, normally distributed, random error with zero mean and constant variance.

Normalized pollutant concentration based on day of week and time of day: a) SR-60 and b) I-710

5-minute Averaged Data

	SR-60							
5-min Averaged - Whole Day	PM _{2.5}		NO		NO ₂		NO _x	
	β _i	p-value	β _i	p-value	β _i	p-value	β _i	p-value
Intercept	2.49E+00	<2e-16	2.80E+00	<2e-16	8.65E+01	< 2e-16	3.16E+00	< 2e-16
RH	7.37E-03	<2e-16	5.37E-04	9.78E-08	-1.37E-01	< 2e-16	-7.76E-04	< 2e-16
Temperature	2.05E-02	<2e-16	-5.05E-03	< 2e-16	-2.97E-02	0.000217	-3.58E-03	< 2e-16
Pressure	9.26E-03	0.14	2.48E-03	0.13867	5.69E-02	0.332666	2.08E-03	0.098657
Wind Speed	2.80E-01	<2e-16	4.04E-02	< 2e-16	3.02E+00	< 2e-16	5.11E-02	< 2e-16
Wind Direction	-1.08E-03	<2e-16	-8.25E-04	< 2e-16	-2.22E-02	< 2e-16	-6.11E-04	< 2e-16
Speed West A	-5.77E-02	0.11	3.79E-03	0.69396	-2.49E+00	1.57E-13	-1.83E-02	0.011598
Speed West B	-3.38E-02	0.297	-6.32E-02	2.52E-13	7.35E-01	0.015134	-2.30E-02	0.000391
Flow West A	-4.18E-06	0.99	1.55E-04	0.07816	3.06E-03	0.322101	1.63E-04	0.014213
Flow West B	-2.43E-04	0.515	5.76E-04	6.81E-09	-1.92E-02	3.30E-08	5.91E-05	0.429529
Speed East A	-2.37E-01	<2e-16	-5.53E-02	1.42E-14	-7.94E-01	0.00163	-4.11E-02	3.38E-14
Speed East B	3.66E-01	<2e-16	2.56E-02	0.00101	-1.92E+00	2.04E-12	4.80E-03	0.411926
Flow East A	7.43E-03	<2e-16	3.18E-03	< 2e-16	7.77E-02	< 2e-16	2.36E-03	< 2e-16
Flow East B	-7.61E-03	<2e-16	-3.09E-03	< 2e-16	-6.51E-02	< 2e-16	-2.19E-03	< 2e-16
Timestamp	-3.41E-05	<2e-16	-1.02E-05	< 2e-16	-3.46E-04	< 2e-16	-8.50E-06	< 2e-16
Multiple R-squared	0.1457		0.2916		0.2306		0.2708	
Adjusted R-squared	0.1452		0.2913		0.2302		0.2704	
p-value	< 2.2e-16		< 2.2e-16		< 2.2e-16		< 2.2e-16	
Degrees of Freedom	26803		26803		26803		26803	
Residual Standard Error	1.294		0.345		12.09		0.2598	

Variables in boldface are statistically significant at 5% α -level

For SR-60 the speed and flow in the East direction is generally significant for all pollutants, and the speed and flow in the West direction is generally significant for NO, NO₂ and NO_x.

 $x_i + \varepsilon_i$

	I-710							
5-min Averaged - Whole Day	PM	[_{2.5}	NO		NO ₂		NO _x	
	β _i	p-value	β _i	p-value	β _i	p-value	β _i	p-value
Intercept	4.96E+00	< 2e-16	4.46E+00	< 2e-16	7.32E+01	< 2e-16	4.06E+00	< 2e-16
RH	1.08E-02	< 2e-16	-4.41E-03	< 2e-16	-1.55E-01	< 2e-16	-3.53E-03	< 2e-16
Temperature	1.20E-02	5.80E-15	-1.91E-02	< 2e-16	-8.03E-03	0.6074	-1.13E-02	< 2e-16
Pressure	-	-	-	-	-	-	-	-
Wind Speed	3.82E-01	< 2e-16	1.77E-01	< 2e-16	5.84E+00	< 2e-16	1.65E-01	< 2e-16
Wind Direction	3.01E-04	0.0029	2.05E-03	< 2e-16	3.87E-02	< 2e-16	1.36E-03	< 2e-16
Speed North A	-9.00E-02	1.20E-06	1.71E-03	0.7774	-3.94E-01	0.0373	1.48E-02	0.002428
Speed North B	-1.86E-02	0.3353	-6.51E-02	< 2e-16	-8.80E-01	7.94E-06	-5.68E-02	< 2e-16
Flow North A	2.51E-05	0.7495	-1.15E-04	6.77E-06	-3.33E-03	3.30E-05	-6.87E-05	0.000907
Flow North B	4.67E-04	0.0284	-7.13E-04	< 2e-16	-4.06E-02	< 2e-16	-8.04E-04	< 2e-16
Speed South A	1.48E-02	0.3108	-2.40E-02	4.72E-07	-1.48E+00	< 2e-16	-2.07E-02	8.57E-08
Speed South B	-1.56E-01	5.48E-09	-1.07E-01	< 2e-16	-2.07E+00	3.62E-14	-8.40E-02	< 2e-16
Flow South A	-1.65E-03	< 2e-16	8.44E-04	< 2e-16	1.71E-02	< 2e-16	6.72E-04	< 2e-16
Flow South B	1.41E-03	1.95E-09	2.09E-04	0.00621	1.03E-02	1.73E-05	1.57E-04	0.011014
Timestamp	-5.08E-05	< 2e-16	-1.91E-05	< 2e-16	-3.95E-04	< 2e-16	-1.46E-05	< 2e-16
Multiple R-squared	0.137		0.3236		0.2528		0.3022	
Adjusted R-squared	0.1366		0.3232		0.2524		0.3019	
p-value	< 2.2e-16		< 2.2e-16		< 2.2e-16		< 2.2e-16	
Degrees of Freedom	25372		25372		25372		25372	
Residual Standard Error	1.3	62	2 0.4433 13.9		91	0.3588		
Variables in boldface are statistically significant at 5% α-level								

For I-710 the speed and flow in the South direction is generally significant for all pollutants, and the speed and flow in the North direction is generally significant for NO, NO₂, and NO_x.

Morning vs Afternoon

Adjusted R ² values		PM _{2.5}	NO	NO ₂	NO _x	
SR-60	Morning	0.13	0.3628	0.2799	0.3443	
	Afternoon	0.1659	0.1947	0.396	0.3055	
I-710	Morning	0.1788	0.4241	0.2853	0.3904	
	Afternoon	0.1223	0.3412	0.3113	0.3176	

Adjusted R² values for morning and afternoon for SR-60 and I-710

model.

Conclusions and Future Work

In this study, 15 variables and more than 26,000 rows of data were collected, including weather parameters, traffic speed, and traffic volume near the air monitoring stations. MLR models were applied to the data to examine the relationship among the weather parameters, traffic data, time of day, and nearfreeway air pollutant concentration. Generally, NO_x concentrations can be better explained by the selected variables than PM_{25} . Additionally time of day (morning vs afternoon) showed to have a significant impact in some cases.

Future work includes gathering more data to gain a better understating on how congestion affects air quality pollutants and including truck flow data into the models. With more near-road air quality data, we hope to better explain the concentration variations and predict the near-road pollutant concentrations in the future.

The authors would like to acknowledge the Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH) for funding this research, and the South Coast Air Quality Management District (SCAQMD) for providing air pollution and weather data from the monitoring stations.

College of Engineering- Center for Environmental Research & Technology

Generally NO and NO_x have a higher R^2 value when looking only at the morning, and NO₂ tends to have a higher R^2 value in the afternoon. PM_{2.5} has a higher R² value in the morning for I-710 and in the afternoon for SR-60. In some cases, such as NO₂, breaking the model down based of morning and afternoon showed an improved R^2 for both when compared to the whole day

Acknowledgements