

Vocation-Specific Activity Patterns and Temperature Effects of On-Road Heavy-Duty Diesel Vehicles in California

George Scora¹, Kanok Boriboonsomsin¹, Kent Johnson¹, Seungju Yoon², and Kathy Jaw²

> ¹University of California at Riverside ²California Air Resources Board

> > 6th International PEMS Conference Riverside, CA March 18, 2016

Background

- Selective Catalytic Reduction (SCR) is used in most diesel engines to meet 2010 NO_x emission standards.
- NO_x Conversion is highly dependent on SCR temperature.
- Typically, SCR needs to be at least 200°C before significant NO_x reduction is achieved.
- There are several situations where SCR may not be at the required temperature:
 - Cold start
 - Idling
 - Low load engine operation
- The fraction of these situations in heavy-duty diesel vehicle (HDDV) operation varies by vocational use.

Project Objectives

- Characterize HDDV activity profiles (e.g., duty cycles, starts, and soak time).
 - For different types of vocational use (line haul, drayage, construction, delivery, etc.)
- Identify fraction of vehicle operation that SCR effectiveness may be compromised.
 - Low SCR inlet temperature
- Compare results with emission certification test cycle.
 - Analyze the representativeness of the certification cycle in reflecting real-world emissions of NO_x

Approach

- Collect real-world vehicle activity and engine operation data from 100 trucks for minimum of one month each.
 - Cellular-based GPS & ECU data loggers
 - 1 Hz data frequency
 - 170 SPNs in J1939 format
- Vehicle and engine information
 - Engine & VIN labels
 - License plate
 - Odometer
 - Body (front, sides, rear)
 - Exhaust temperature probes
 - Etc.

Targeted Truck Vocations

• Line haul

UCR College of Engineering- Center for Environmental Research & Technology

- Drayage
- Agricultural
- Construction
- Food/beverage distribution
- Shuttle
- Refuse
- Transit
- Public work
- Utility

stribution

Sample Data

• One trip (engine on to off) of a dump truck

Vehicle Statistics for Four Selected Vehicles

Vocation	Model Year	Data Collection Period (Begin-End)		Time (hrs)	Distance (mi)	Number of Trips	Average Trip Length (mi)	Non-idle Average Velocity (mph)	ldle Time (%)	Average Idle Duration (sec)	Trips per Hour	Trips per 100 mi
Line-haul	2012	7/3/2015	10/1/2015	512.1	15,841.86	417	38.0	44.0	29.7	62	0.81	2.63
Dump	2010	2/4/2015	5/27/2015	440.4	9,147.41	347	26.4	31.8	34.8	77	0.79	3.79
Beverage	2013	2/9/2015	5/4/2015	162.1	1,969.81	592	3.3	15.9	23.5	27	3.65	30.05
Refuse	2012	4/22/2015	9/18/2015	202.2	1,695.92	81	20.9	10.4	19.9	17	0.40	4.78

Joint Speed-acceleration Frequency Distribution by Vocation

SCR Temperature Distribution

• 25.4% of the trip having SCR temp. lower than 200 °C

Cumulative Frequency for SCR Temperature by Vocation

SCR Inlet Temperature vs. Velocity by Vocation

UCR College of Engineering- Center for Environmental Research & Technology

Cold Start and Idle Effect on Temperature

500

450

400

350

200

ပ္ 300

Temperature, 250

Calalco Rd Mead Valley 150 ERIder St 100 50

UCR College of Engineering- Center for Environmental Research & Technology

Low Load Effect on Temperature

500 oma Linda 450 400 350 Google earth ပ္ 300 Temperature, 250 CAD. wood Ave 200 M 60 Moreno Valley Fwy adlands Blvd 150 Fir Ave is 6unuar 100 38 50 Cottonwood Ave e earth Google C

IJ

Low Load SCR Cooling Effect Resulting from Negative Grade

Velocity, mph 0 Altitiude, m

Summary

- This project is collecting a rich set of vehicle activity and engine operation data from a variety of HDDV vocations.
- Data can be used to:
 - Characterize HDDV activity patterns.
 - Develop vocation-specific driving cycles.
 - Understand implications on SCR effectiveness, real-world NO_x emissions, and NO_x inventories.
 - Develop SCR temperature models.
 - Etc.
- Project is still ongoing.
 - Data collection period ending in spring 2016.
 - Project completion in summer 2016.

Additional Information

- Acknowledgements
 - California Air Resources Board
 - U.S. Environmental Protection Agency
 - Participating fleets
 - infoWedge
 - HEM Data
 - Contributing staff at CE-CERT, UC Riverside
- Contacts
 - George Scora (gscora@cert.ucr.edu)
 - Kanok Boriboonsomsin (<u>kanok@cert.ucr.edu</u>)
 - Kent Johnson (kjohnson@cert.ucr.edu)
 - Seungju Yoon (<u>seungju.yoon@arb.ca.gov</u>)

17

