Real-World Black Carbon, Particle Number Concentration and Nitrogen Oxide Vehicle Emission Factors: On-Road Chasing Campaign Results

<u>I. Ježek¹</u>, L. Drinovec^{1,2}, S. Oprešnik Rodman³, L. Ferrero⁴, M. Carriero⁵, D. Westerdahl⁶, T. Katrašnik³, G. Močnik^{1,2}

¹Aerosol d.o.o., Ljubljana, Slovenia

² Jožef Stefan Institut, Ljubljana, Slovenia

³ University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

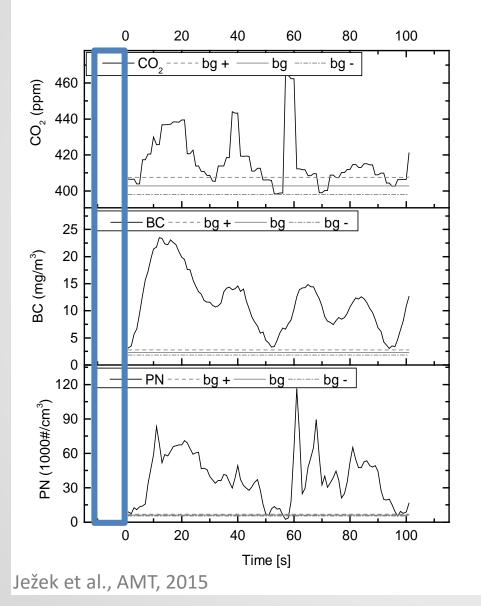
⁴ University of Milano Bicocca, Milano, Italy

⁵ Joint Research Centre, Ispra, Italy

⁶ Cornell University, Ithaca, NY 14853, USA

Contact: irena.jezek@aerosol.eu

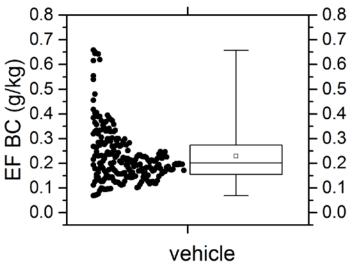
Outline


On-road chasing method tests:

- Influence of dilution on EF calculation
- Influence of vehicle performance on the EF distribution

On-road chasing measurement campaign

- first on-road chasing measurements of cars
- sampled vs. European fleet statistic
- influence of vehicle age on EFs
- contribution of super emitters to fleet emissions


Emission factor (EF) determination

$$EF_{P} = \frac{\int_{t_{1}}^{t_{2}} ([P]_{t} - [P]_{t_{1}}) dt}{\int_{t_{1}}^{t_{2}} ([CO_{2}]_{t} - [CO_{2}]_{t_{1}}) dt} \cdot w_{c}$$

w_c – carbon fraction in fuel

EF distribution for a single chasing event

1

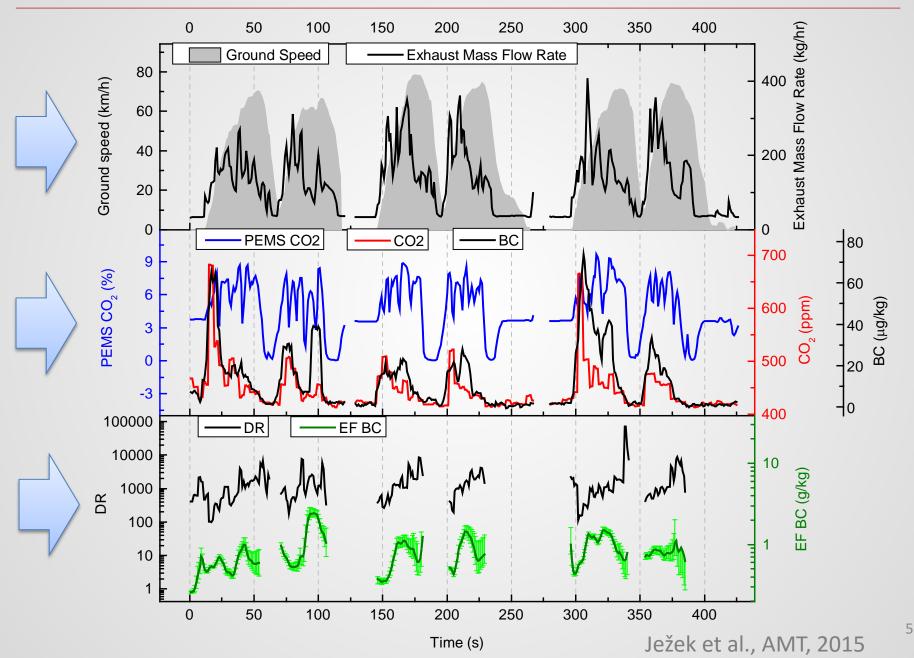
3

On-road emission factor measurement tests

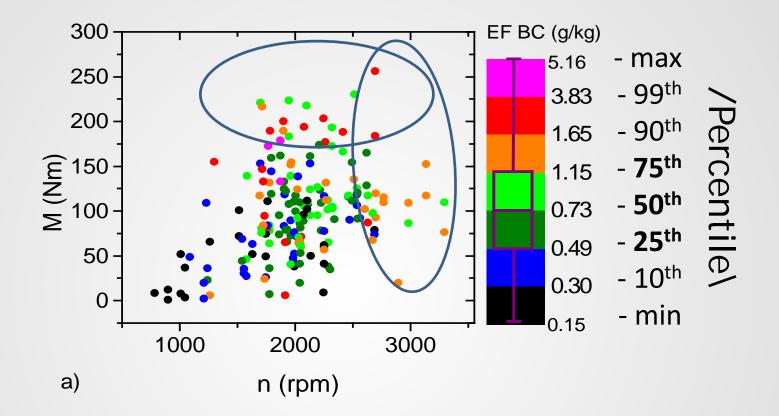
Chasing a vehicle equipped with Portable Emissions Measurement System (PEMS)

- Influence of dilution
- Relate vehicle performance to measured BC EF

Instruments:


- <u>Mobile platform</u>: Aethalometer AE33 (BC), Carbocap (CO₂)
- Euro 3 van with PEMS:

CO₂, exhaust mass flowrate, engine rotational frequency, vehicle speed and position, outside air temperature



The van equipped with PEMS on the old part of the Monza F1 race track (Italy)

Results: Influence of dilution on EF

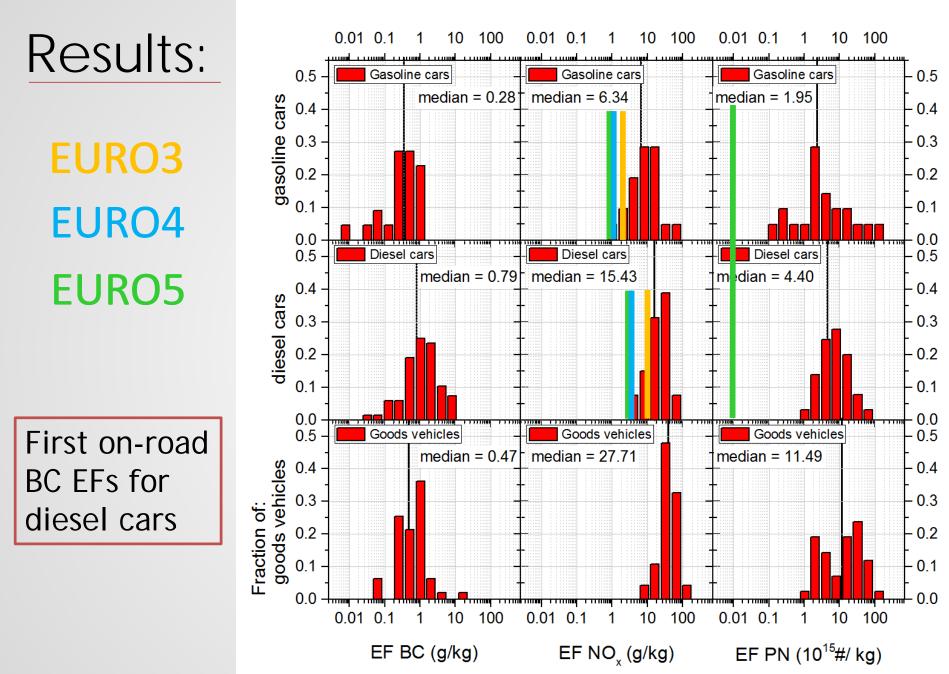
EF distribution and vehicle's performance

- Torque (M) engine's ability to work (Heywood , 1988)
- n crankshaft rotational frequency
- In pth percentile p% of the sample values are less than the pth percentile and (100 p)% are greater

On-road EF measurement campaign

- We measured CO₂, BC, PN and NO_x concentrations.
- We obtained <u>registry information on vehicles</u> (fuel, age, category, weight, engine displacement ...)
- Comparison of sampled fleet statistic to Eurostat data

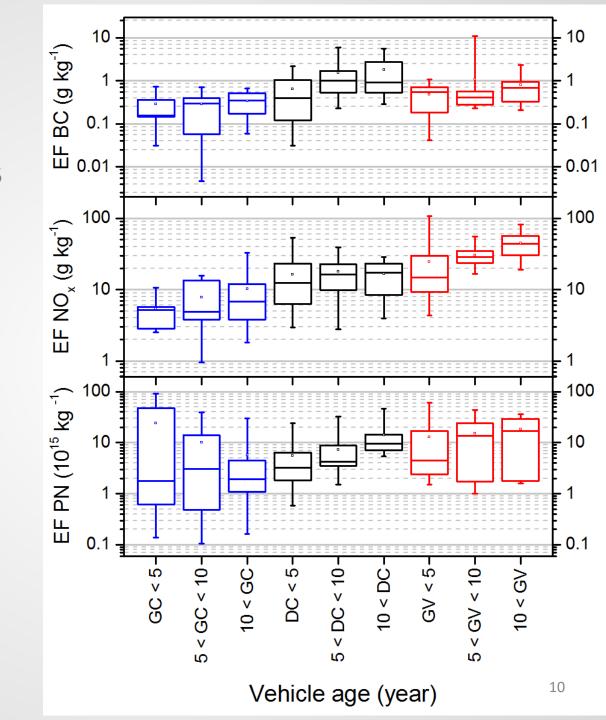
The total of 139 vehicles measured


and distributed to three vehicle categories :

- 68 cars with compression ignition engine diesel cars;
- 24 cars with spark ignition engine gasoline cars;
- 47 goods vehicles (included light goods vehicles N2, busses M2 and M3, and heavy goods vehicles N3)

Representativeness of car fleet

		10 years or over	From 5 to 10 years	From 5 to 2 years	Less than 2 years
Europe	Total	42%	28%	19%	11%
Slovenia	Total	39%	34%	18%	9%
	Gasoline	50%	25%	15%	9%
	Diesel	18%	48%	23%	11%
This study	Total	27%	47%	29%	7%
	Gasoline	50%	25%	17%	8%
	Diesel	16%	49%	29%	6%
[% of dies	sel cars		
	Europe	34		Ježek et al., ACP, 2015	
	Slovenia	36			
	This study	68	3		8



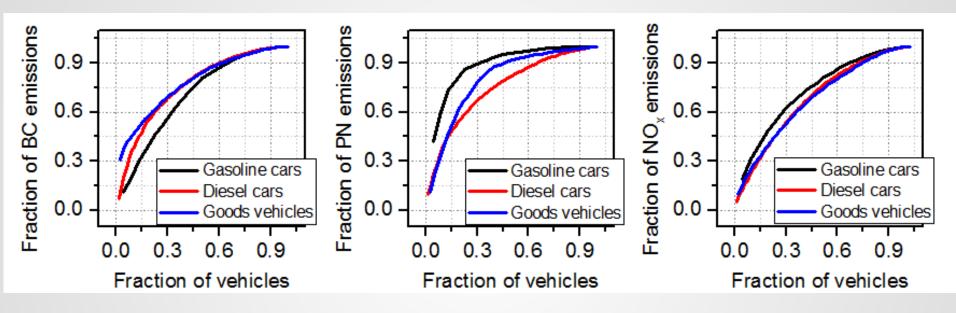
Ježek et al., ACP, 2015

Effect of vehicle age

Less than 5 years ≈ Euro 4 and 5 Between 5 and 10 ≈ Euro 3 10 and more ≈ Euro 2 or less

- The median BC EF of diesel cars that were in use for less than 5 years was reduced by a 60% compared to those in use for 5 10 years.
- No decrease in median BC EF of the goods vehicles.
- PN and NO_x EF of goods vehicles were reduced by 52% and 67%, respectively.

Ježek et al., ACP, 2015


Comparing our results to other on-road studies

Ježek et al., ACP, 2015

Study	Study type	Vehicle type	EF BC (g kg ⁻¹)	EF NO _X (g kg ⁻¹)
Shorter et al., 2005	Chasing ^a	Diesel buses		34.5 (8.1 - 117.1)
		CRT		27.8 (±6.3)
Wang et al.,2012	Chasing ^b	HGV Beijing	0.4 (0.2-0.8)	47.3 (38.1 - 62.5)
		HGV Chongqing	1.1 (0.7-1.6)	40.0 (31.7-48.1)
Dallmann et al., 2011	Remote s. ^c	HGV (2009)	1.07 ± 0.18	25.9 ± 1.8
		HGV (2010)	0.49 ± 0.08	15.4 ± 0.9
Dallmann et al., 2013	Remote s. ^c	HGV	0.62 ± 0.17	
Carslaw and Rhys-	Remote s. d	Gasoline cars		5.34 (1.15 - 26.83)
Tyler, 2013		Diesel cars		16.37 (14.82 - 20.65)
		Van		18.1 (16.87 - 23.59)
		HGV (all)		37.88 (35.13 - 48.37)
This study	Chasing ^b	Gasoline cars	0.35 (0.005-1.52)	6.74 (3.3 - 13.16)
		Diesel cars	0.92 (0.03-5.87)	15.47 (9.15 - 23.28)
		LGV	0.56 (0.05-5.24)	20.25 (11.84 - 28.22)
		HGV	0.45 (0.04-11.01)	29.6 (23.18 - 48.67)

^a mean and range in parenthesis; ^b median (1st and 3rd quartile); ^c mean ± 95% confidence interval; ^d emission ratios from Carslaw and Rhys-Tyler paper were converted to EFs using the same molecular weights and carbon fraction as in formula 1; presented are average values for all Euro standards in a group, in parenthesis are the smallest and largest mean value of emission standards.

"Super emitters" contributions to total fleet emissions

- Contribution of super emitters: 25% of vehicles was found to disproportionately contribute to the total fleet emissions 47% to 87%.
- 25% of emitting diesel cars contributed: 63% of BC, 61% of PN and 47% of NO_x emissions

Conclusions

- The first tests of the on-road chasing method.
- First reported BC EF for individual diesel cars measured in real driving conditions.
- Good agreement with the results of previous studies.
- The median BC EF of diesel cars that were in use for less than 5 years was reduced by a 60% compared to the Thank you for your attention!
 No

PN and NO_x EF of goods vehicles were reduced by 52% and 67%, respectively.

- Simple and efficient methodology for monitoring emissions of the in-use vehicle fleet
- Identification of supper emitters

Investing in your future Operation Part Financed By The European Union European Social Fund Contact:

irena.jezek@aerosol.eu