Using Portable Emission Measurement System to Test Emissions of Light Duty Vehicle on Texas Highways with Different Pavement Roughness

Presenter: Fengxiang Qiao, Ph.D. Associate Professor and Co-Director Innovative Transportation Research Institute Texas Southern University

Sponsored by US DOT Tier 1 UTC TranLIVE, NSF, and TxDOT

Table of Content

- Motivation of Research
- Measuring Vehicle Emissions Using PEMS
- Classifying Pavement Roughness Indexes Based on Vehicle Emissions
- Modeling Vehicle Emissions Considering Pavement Roughness in Work Zone

One Example: A Calibrated Model for Estimating Pavement Effect on Fuel Consumption

• By Imen Zaabar and Karim Chatti

- Medium car HDM 4
- SUV HDM 4
- —×— Van HDM 4
- Light truck HDM 4
- Articulated truck HDM 4

- --- B--- Medium car Regression
- ---&-- SUV Regression
- ---+-- Van Regression
- ---e--- Light truck Regression
- ---- Articulated truck Regression

Research Questions

- Will Roadway Roughness Really Affect Vehicle Emissions
- What would be the Trend if such Impacts are True?

Methodology

- Test Vehicle Emissions Using PEMS
- Measure Pavement Roughness
 - From a phone application, and/or
 - From DOT measurement record
- Cluster Roughness Based on Pavement Roughness
- Model the Nonlinear Relationships between "Roughness + other Independent Variables" and Vehicle Emissions in Work Zone
 - With serious changes of pavement roughness

A Dedicated Test Vehicle

- A 2004 Passenger Vehicle
- Starting Mileage 16,496 km

Vehicle Info	rmation	Engine Information				
Year	2004	Displacement (L)	2.5			
Make	Subaru	Cylinder Configuration	4			
Model	Forester	HP@RPM	165 @ 5699			
Vehicle Weight	3100 lb	Torque@RPM	225 Nm @ 4000			
Test Weight	3500 lb	Fuel Delivery	Gas			

PEMS for Testing

- Axion GlobalMRV
- CO, CO₂, NO_x, HC, PM (for HDDV)

GA Cantools	Die Andyree 1 Display				unian of the cohordin		
Ges Analyser 1	12:07:44	122414	CO2 (NI	0.00	gas beion.		5.07,18
Inglas	Huld	12.500	CO (%)	0.000	NOs (pante) (2)?	Proceed	C.WAA
test	Hew Liber	A Pump	IIK (spm)	0	Citel (punt)	Printersonal	4293
Purp Couldt	NCIR Norma	1	NOs (ppm)		CO1 (00 14 02	Fail California	1854
Shared	C2 NOs News	nul 🖬	01/64	30.71	CO CO AL		AD2.4
Level Zent	-	-	and the local		and all a		
Dilterty	-	Gas Analyzer 2	Display				alesson of
lere Auto	110744	127825	(0) (%)	840			24.0
Set Analyzer 2	Hold:	001130	CO 158	0.003	Photo	ON MAPLOS	Netfoun
200 60	New Good	Pump	HC (ppm)	0	MRal	Stat: Photo Reset 11	48.34
forest (NOR Normal		NOn (apm)	0		TO 17 10	-
State of State State	O2 NO+ North	al In	01150	20.52		and the second s	A. C.

Emission Measurement

- Test roads (2,000+ km/ 1,242 mile+) in Texas
- Data Collection
 - Vehicle activity, such as speed, MAP, rpm, Intake Air Temperature (IAT), Ambient Air Temperature (AAT), etc. from OBD II/sensors

Collage Station

San Antonio

Houston

- Vehicle emissions (CO₂, CO, HC, NO_x) and fuel consumption(FC) from Portable Emissions Measurement System (PEMS)
- Pavement roughness from a smartphone app for every 20 meters

Clustering Pavement Roughness Based on Vehicle Emission

- Data pairs were prepared. Each includes International Roughness Index (IRI), geographic location, emission rates, speed, and engine information.
- Normalization for four emission indexes (CO, CO₂, NO_x, and HC)

$$x_i' = \frac{x_i - x_{i,min}}{x_{i,max} - x_{i,min}}$$

 x_i = the interpolated emission factor for emission index *i*, $x_{i,min}$ =are the minimum values of all emission factors for emission index *i*; $x_{i,max}$ = are the maximum and minimum values of all emission factors for emission index *I*; x'_i = the normalized emission factor for emission index *i*, ranging between 0 and 1.

- Identify a clustering model from three clustering models
 - TwoStep, Kohonen, and K-means

Clustering Model	Clusters	Silhouette
TwoStep	4	0.576
Kohonen	12	0.552
K-means	5	0.311

Clustering Results

Findings

Category		IRI				/n-vehicle	Heart	General	
		Range	Ave.	Std.	Evaluate	noise	Rate	Impression	
	Α	(0.00-1.99]	0.051	0.055	High	60-70	Low	Poor	
	В	(1.99-3.21]	0.032	0.017	Low	60-70	Low	Optimal	
	С	(3.21-6.00]	0.030	0.016	Low	> 70	High	Acceptable	
	D	> 6.00	0.039	0.014	High	70	High	Poor	

- Category B is Recommended for Pavement Roughness Design
 - Less vehicle emissions
 - High fuel consumption efficiency
 - o Lower in-vehicle noise
 - o Better riding conform, and
 - Lower possibility of adverse health effects

From our another research

Evaluation of the Impact of Work Zone on Vehicular Emissions Considering Roughness

- Investigated the effects of work zone on vehicular emissions in consideration of roadway roughness profiles
- Proposed an emission model based on the operating mode binning method and roughness data to quantify the impact of road roughness on vehicular emissions
- Analyzed roadway construction related emissions

Data Collection

- A Work Zone in US 290 Houston, TX Using PEMS
- 2:30 p.m. to 5 p.m. on March 19, 2015, Dry pavement condition

Test Site

Methodology

• Emission Factor in work zone is a function of emission factor in non-work zone and the roughness under both situations

$$EF_{w}^{i} = \beta_{1}EF_{n}^{\beta_{2}\frac{IRI_{w}}{IRI_{n}} + \beta_{g}} RMSE_{i} = \sqrt{\frac{\sum_{t=1}^{n}(EF_{real} - EF_{model})^{2}}{n}}$$

 Emission factor data pairs in work zone and nonwork zone area were compared within each operating mode ID bin, which is based on the values of speed and vehicle specific power (VSP)

Operating Mode Binning and Frequency

OMID	Operating Mode Description		Frequency (0)	Frequency (1)
0	Braking: Acceleration<-2mph/s or<-1mph/s for 3	seconds	360	285
1	Idling: -1≤Speed<1		12	0
11	Low Speed Coasting: VSP<0; 1≤Speed<25		287	267
12	Cruise/Acceleration: 0≤VSP<3; 1≤Speed<25		369	296
13	Cruise/Acceleration: 3≤VSP<6; 1≤Speed<25	Lower	228	122
14	Cruise/Acceleration: 6≤VSP<9; 1≤Speed<25	Speed	329	245
15	Cruise/Acceleration: 9≤VSP<12; 1≤Speed<25	opeed	415	386
16	Cruise/Acceleration: 12≤VSP; 1≤Speed<25		6	24
Z1	Moderate Speed Coasting: VSP<0; 25 <speed<50< th=""><th></th><th>125</th><th>102</th></speed<50<>		125	102
22	Cruise/Acceleration: 0≤VSP<3; 25≤Speed<50		282	266
23	Cruise/Acceleration: 3≤VSP<6; 25≤Speed<50		363	360
24	Cruise/Acceleration: 6≤VSP<9; 25≤Speed<50	Medium	0	0
25	Cruise/Acceleration: 9≤VSP<12; 25≤Speed<50	Speed	341	345
27	Cruise/Acceleration: 12≤VSP<18;25≤Speed<50	opeeu	317	433
28	Cruise/Acceleration: 18 <vsp<24; 25<speed<50<="" th=""><th></th><th>27</th><th>12</th></vsp<24;>		27	12
29	Cruise/Acceleration: 24 <vsp<30; 25<speed<50<="" th=""><th></th><th>2</th><th>0</th></vsp<30;>		2	0
30	Cruise/Acceleration: 30 <vsp; 25<speed<50<="" th=""><th></th><th>0</th><th>0</th></vsp;>		0	0
33	Cruise/Acceleration: VSP<6; 50 <speed< th=""><th></th><th>182</th><th>239</th></speed<>		182	239
35	Cruise/Acceleration: 6≤VSP<12; 50≤Speed		326	373
37	Cruise/Acceleration: 12≤VSP<18; 50≤Speed	Higher	190	251
38	Cruise/Acceleration: 18≤VSP<24; 50≤Speed	Speed	78	116
39	Cruise/Acceleration: 24≤VSP<30; 50≤Speed	•	127	145
40	Cruise/Acceleration: 30≤VSP; 50≤Speed		6	1

0 stands for work zone, 1 for non-work zone

Emission Factors

• Work Zone and Non Work Zone

	EF _w	EF _{nw}	(EF _w -EF _{nw})/EF _{nw}
CO ₂ (g/mi)	0.392	0.340	15.2%
CO (mg/mi)	1.392	1.966	-29.2%
HC (mg/mi)	0.140	0.183	-23.5%
NO _x (mg/mi)	0.158	0.091	73.6%
FC (g/mi)	0.138	0.108	27.8%

Emission, Fuel Consumption and eIRI of Operating Mode Bins

OMID	CO ₂ (0)	CO ₂ (1)	CO (0)	CO (1)	NO _x (0)	NO _x (1)	HC (0)	HC (1)	FC (0)	FC (1)	eIRI (0)	elRl (1)
0	0.087	0.073	0.364	0.531	0.028	0.021	0.018	0.012	0.028	0.023	2.172	1.940
11	0.295	0.220	1.364	1.252	0.073	0.045	0.067	0.019	0.094	0.070	1.704	1.584
12	0.527	0.345	4.324	6.111	0.127	0.108	0.090	0.029	0.169	0.112	1.753	1.607
13	0.885	0.552	5.446	8.867	0.221	0.125	0.153	0.093	0.282	0.179	1.928	1.513
14	1.088	0.801	5.502	8.771	0.277	0.188	0.175	0.203	0.347	0.258	1.767	1.641
15	1.264	0.980	2.286	3.551	0.322	0.239	0.180	0.482	0.399	0.311	1.623	1.618
21	0.133	0.128	0.826	0.765	0.034	0.028	0.020	0.016	0.042	0.041	1.794	1.754
22	0.218	0.210	1.122	1.798	0.057	0.046	0.036	0.021	0.069	0.067	1.885	1.760
23	0.303	0.286	1.071	1.803	0.077	0.060	0.043	0.059	0.097	0.091	2.317	1.671
25	0.430	0.447	0.752	1.193	0.105	0.096	0.070	0.064	0.137	0.142	1.995	1.634
27	0.596	0.597	0.815	0.923	0.138	0.129	0.123	0.105	0.182	0.190	1.860	1.808
28	0.760	0.750	0.761	0.461	0.172	0.172	0.127	0.334	0.240	0.237	2.032	2.070
33	0.171	0.189	0.432	1.076	0.045	0.048	0.021	0.035	0.054	0.060	2.072	2.144
35	0.310	0.299	0.592	1.524	0.079	0.076	0.050	0.075	0.098	0.095	2.168	2.021
37	0.415	0.377	0.683	1.426	0.102	0.100	0.068	0.124	0.132	0.120	2.174	1.961
38	0.495	0.423	0.874	1.263	0.119	0.110	0.107	0.135	0.157	0.134	2.231	1.946
39	0.455	0.452	0.907	1.413	0.116	0.123	0.066	0.082	0.144	0.144	1.872	1.566

0 stands for work zone, 1 for non-work zone Units: CO₂ (g/mi), CO (mg/mi), NO_x(mg/mi), HC(mg/mi), FC(g/mi)

Calibrated Parameters for Emission Factor under different Operation Mode ID bin

OMID	Index	b1	b2	b3	R ²	RSME
	FC	0.940	-0.040	0.952	0.929	0.021
	CO ₂	0.954	-0.045	1.168	0.890	0.064
	СО	0.634	0.095	0.981	0.917	0.201
	NO _x	0.879	-0.009	0.903	0.930	0.141
0	НС	0.262	0.680	1.298	0.801	0.162
	FC	1.185	-0.062	0.968	0.899	0.062
	CO ₂	1.152	-0.054	1.168	0.916	0.073
	СО	0.621	-0.091	0.982	0.927	0.182
	NO _x	0.887	-0.020	0.901	0.931	0.170
11	НС	0.261	0.694	1.296	0.792	0.119
	FC	1.149	-0.055	0.956	0.917	0.012
	CO ₂	1.174	-0.064	1.164	0.918	0.022
	СО	0.652	-0.071	1.014	0.949	0.151
	NO _x	0.896	-0.021	0.865	0.919	0.103
12	HC	0.245	0.675	1.315	0.822	0.093
	FC	1.164	-0.063	0.982	0.886	0.017
	CO ₂	1.171	-0.079	1.151	0.891	0.033
	СО	0.616	-0.068	0.990	0.905	0.173

Comparing of RMSE on Each Operating Mode Bin

- For Work Zone and Non-Work Zone Area
- 70% Used for Modeling, 30% for Validation

Results

- The calibration and validation results of fuel consumption has the highest average accuracy compared with CO₂, CO, HC and NO_x
- The proposed model has a good fit for NO_x and HC in the relatively higher speed range (above 25 mph) while in the low speed range (OMID between 0 and 13), the error may exceed 0.1 in some cases
- The general trend of this model is that highest accuracy is achieved in the intermediate speed range (OMID between 21 and 27) and in the low speed range the model has highest error

Findings

- Work zone can contribute to significantly increased emission factors of CO₂, NO_x and fuel consumption and reduced emission factor of CO and HC.
- Increased roughness in work zone compared with the same non-work zone roughness leads to increased emission factor for CO₂, NO_x and fuel consumption and the opposite effect can be observed for CO and NO_x
- The results are suggestive of the findings drawn, but more field work needs to be done in the future to see whether the findings are robust to support the conclusion

