Development of Novel NOx Sensors and System Integration with Alumina Heater Elements

UC Riverside PEMS 2016 International Conference & Workshop March 17, 2016

F. Bell, M. Boettcher, J. Chee, J. Fitzpatrick, S. Harding, B. Henderson, D. Lippoth, M. Phee, L. Sorensen, V. Wang, and <u>L.Y. Woo</u>

R. F. Novak and J. H. Visser (Ford Motor Company)

NOx sensors currently in vehicles and our novel method both related to O₂ sensor technology

- In vehicles now amperometric operation (dc current) of solidstate electrochemical cell
 - Multiple cells to pump out O₂ and measure remaining NOx
 - Difficulty detecting sub 5 ppm and poor durability of complex probes

https://www.youtube.com/watch?v=VsR_P-14K0U

- Our method novel single-cell 'impedancemetric' operation
 - Two electrodes with specific oxygen catalyst properties covered with porous yttria-stabilized zirconia (YSZ) O²⁻ conducting ceramic electrolyte placed directly in gas
 - Applied oscillating signal with resulting wave distortion analyzed
 - Potential for lower cost and better performance

System integration with alumina heater elements

Impedancemetric sensing: Yttria-stabilized zirconia (YSZ) electrolyte conducts O²⁻>600°C

For operation, choose phase angle (θ) at 5-50 Hz and 100 mV excitation

- Less than ~1 kHz: Impedance (phase angle, θ, and magnitude, |Z|) decrease with increasing NOx and O₂
 - Oxygen methods for extraction
 - Phase angle (θ) better stability and sensitivity than |Z|

Development of lower cost electronics led to surprising discovery about sensor response

- Precision laboratory equipment (Solartron 1260) costs ~ \$50k
- For portable low-cost digital electronics, explored triangle wave form and zero-crossing detection
- Complex response to triangle wave source showed peak relatively unchanged – no phase shift!
- Digital voltage-current time differential method using complex changes in asymmetric wave form
- NOx and O_2 concentration alter different portions of wave in time basis for extracting oxygen

Sensing relies on electrochemical reaction rates at the electrode/electrolyte interfaces

 Resolve ppm NOx changes in large 2-21% O₂ background by limiting O₂ reaction rate with porous YSZ electrolyte

System integration of NOx sensor designs with Al₂O₃ heater for more deployable prototypes

- More advanced designs suitable for single higher temperature cofiring step with Al₂O₃ for easier processing and improved robustness
- Bonding of porous YSZ electrolyte to Al₂O₃
- Incorporating more desirable processing techniques such as screen-printed electrodes
- Packaging and electrical connections to heater and sensor

Continued evolution of designs starting with hand-assembled single-cell lab prototypes

- AI_2O_3 substrates and Pt leads fired ~ 1500°C
- Followed by separate lower temperature (1000 °C) post-firing step for Au wire and porous YSZ
- Sensitivity < 5 ppm, response < 5 sec for 10 ppm
- Stable reproducible signal > 1000 hours and durability > 3800 hours
- Low cross-sensitivity to water

More advanced designs: Au ribbon constrained by YSZ layers suitable for cofiring with AI_2O_3

Polish to expose contact pads at ends for electrical leads

- 1450°C as target minimum for cofiring with Al₂O₃
- Tape cast YSZ thickness (before firing) ~10 mils: laminated 2 layers above and 2 layers below Au ribbons
- Au ribbons: ~11 mils width x 5 mils thickness with 25 mil spacing between
- Fugitive material added to Au ribbon channels to account for larger shrinkage of ceramic

CCORSTEK

Previously, two different porous YSZ studied for constraining Au at 1450 °C (no Al₂O₃ heater)

Investigate cofiring two different porous YSZ with AI_2O_3 at 1450°C

- Both types of porous YSZ bonded to Al₂O₃
- Densification of porous YSZ near interface with Al₂O₃
- More porosity (indicated by uptake of red dye) in calcined YSZ – better sensor performance

Evidence of interfacial structure and strong bonding in calcined YSZ with Al₂O₃

"Fine-grain" structure in calcined YSZ near interface with AI_2O_3

- Thermal cycling and autoclave testing indicated strong durable bonding at YSZ/Al₂O₃ interface
- Due to strong bonding and better porosity than carbon black, used calcined YSZ for developing working sensors with Au electrodes and Pt leads integrated with AI_2O_3 heater elements

CORSTEK,

1450 °C cofiring of Au electrode and Pt lead showed poor electrical continuity

 Novel material interconnect developed to allow electrical contact between Au electrode and Pt lead

Verified performance of sensor designs using novel material interconnect solution

COORSTEK

Replace Au ribbon electrode with Au paste for all screen-printed sensor prototype

Au paste/YSZ/Al₂O₃

Development of packaging for operating NOx sensor prototypes with Al₂O₃ heaters

- Concept design to understand role of:
 - Venturi tip
 - Crushable gas seal
 - Electrical connection

Maintaining sensor performance as designs evolve towards more deployable prototype

Next steps

- Improving shrinkage match to reduce bowing
- Optimizing novel interconnect material solution
- Re-evaluating aging/drift and sensitivity to NO₂, H₂O, and NH₃ in more advanced designs to compare with previous data from earlier designs
- Modifying electronics for compatibility with more advanced designs
- Continuing to improve Al₂O₃ heater operation and develop packaging

Summary

- Novel single-cell 'impedancemetric' sensor
 - Wave distortion from applied oscillating signal digital voltage-current time differential
 - Potential for lower cost and better performance
- System integration of NOx sensor designs with Al₂O₃ heater for more deployable prototypes
 - Constrained gold electrodes suitable for cofiring with Al₂O₃ for easier processing and improved robustness
 - Good bonding of calcined YSZ to Al₂O₃
 - Novel material interconnect solution for Au and Pt
 - All screen-printed design and packaging development

Questions? Thank you for you attention! lw@emisense.com