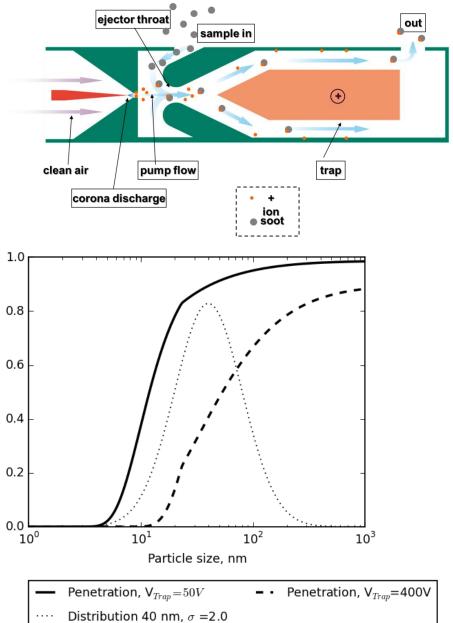
Expanded Capabilities of Dual Pegasor PPS-M Sensor in PEMS Measurements Beyond PN, PM and Particle Size

E. Saukko¹, A. Järvinen², H. Wihersaari², T. Rönkkö², K. Janka¹ & J. Keskinen²

¹ Pegasor Oy, Hatanpään Valtatie 34 C, Tampere, Finland


² Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, Tampere, Finland

PEMS Workshop 2016

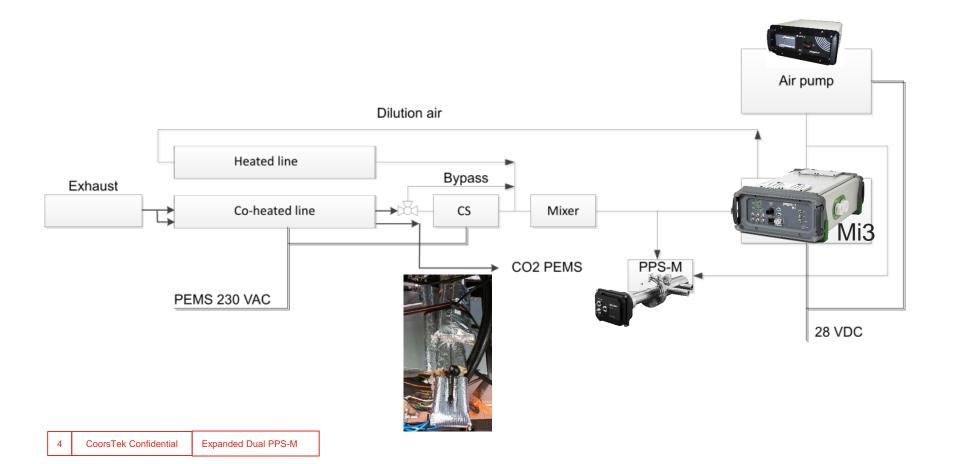
٠	۰	۰		٠	۰	۰	۰	٠	٠	٠	۰	۰	٠	٠	۰	۰	۰	۰	٠	٠	٠	۰	۰	٠	۰	۰	۰	۰	۰	٠	٠	۰	۰	٠	٠	٠	•	٠	٠	٠	۰	٠	٠		٠	٠	٠
٠	٠	۰	۰	٠	٠	۰	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠
•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠
•	٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	٠	•	•	٠	٠	٠	٠	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	٠	٠	۰	•	•	٠	•	٠	•	٠	٠	٠	•	٠	•	•	•
•	٠	•	٠	•	٠	٠	٠	٠	•	٠	٠	٠	•	•	•	•	٠	٠	•	•	•		•	•	٠	٠	٠	٠	•	•	٠	٠	٠	•	•	•	•	٠	•	٠	٠	٠	٠	٠	•	•	•
•	٠	٠	٠	•	٠	٠	•	٠	•	٠	٠	٠			٠	•	٠	٠	•	•	•			•	٠	٠	٠	٠	•	•		٠	٠	•	•	•		•	•	٠	٠	٠	٠	٠	•	•	•
•	٠	٠	٠	•	٠	٠	٠	٠	•	٠	•	٠	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	٠	٠	٠	•	•	٠	٠	۰	•	•	•	•	٠	•	٠	•	٠	•	۰	•	•	•
	٠	٠		•	٠	٠	•	٠	٠	٠	٠	٠	•	•	٠	•	•	٠	٠	٠	•	•	•	٠	٠	٠	٠	٠	٠	•	٠	•	٠	•	•	٠	•	٠	•	٠	•	٠	•	٠	•	•	•
	٠	•	۰			٠	•	٠		٠	•	٠	•		•	•	٠	٠						٠		٠		٠	•			٠	٠		•	•	•	•		٠	٠	٠	٠	•		•	•
•	•	•	٠	•	•	٠	•	٠		•	•	•	•	•	•	•	٠	٠	•	•	•		•	•	٠	٠	•	٠	•			٠	٠		•	•	•	•	•	•	•	٠	•	٠	•	•	•
	•		•		•	•	•	•		•	•	•			•	•	•	•		•				•		•	•	•				•	•														•
	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠		•	•	•	•	•		•	•		•	•		٠	•								,						•
	•	•	•				•	•			•	•					•	•								•	•			•		•	•				\bigcap	V		R			F		<		
	•	•	•			•	•	•		•	•	•					•	•		•						•		•	•			•	•							Am	azi	ng	Solu	utic	ns®		•
	•				•	•	•	•	•	•	•					•	•	•		•	•					•	•	•				•	•								GILI	- s		arene			•

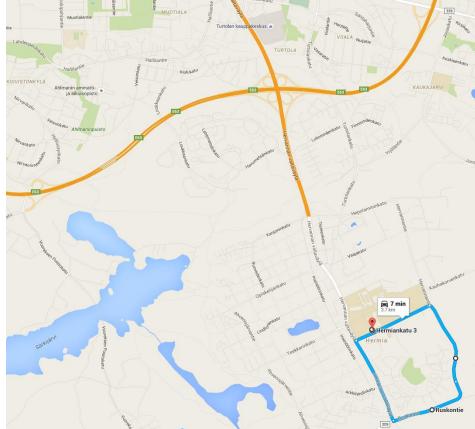
Introduction

- Dual PPS-M introduced by Amanatidis et al (2015)
 - Two PPS-M units have their trap set at different voltages->size response separation
- This leads to other ways of "misusing" a pair of instruments
 - Charger off -> information about charge state
 - Volatile removal -> volatility analysis
- This was tested with an on-road PEMS study with Mi3 and PPS-M

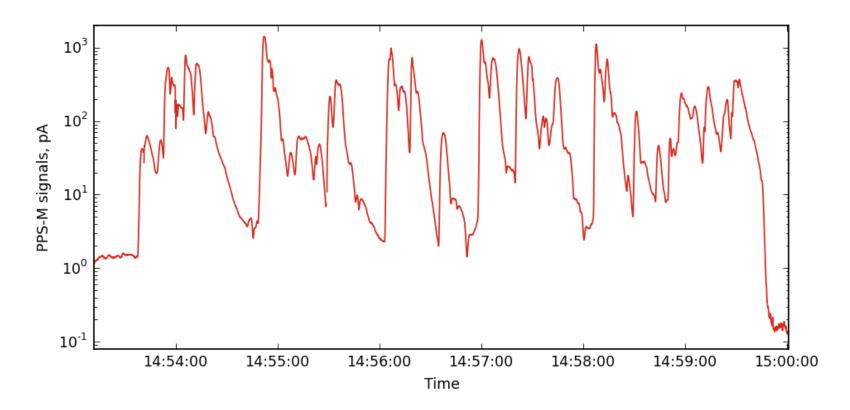
Setup

- Renault Megane 1.2L TCe, Turbo, GDI, TWC, 50 000 km
- Sampling at the tailpipe

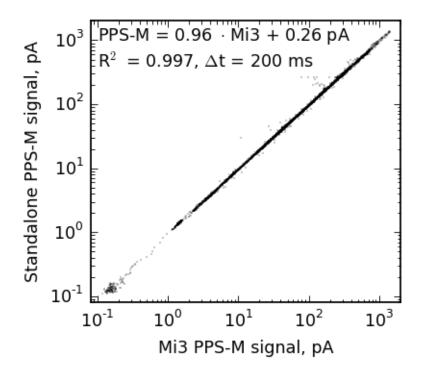


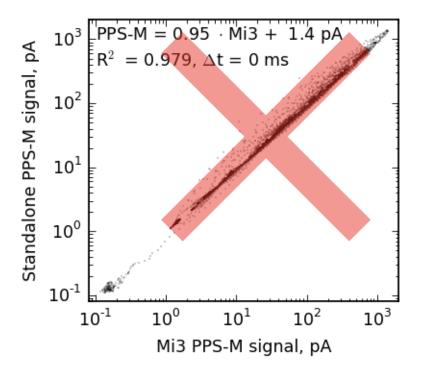


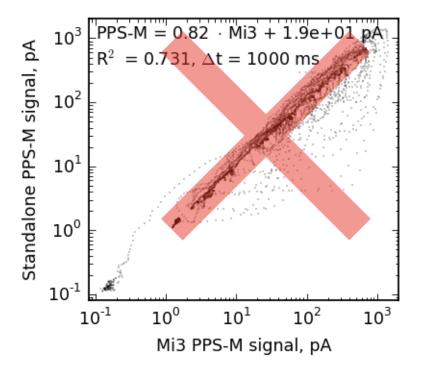
Setup

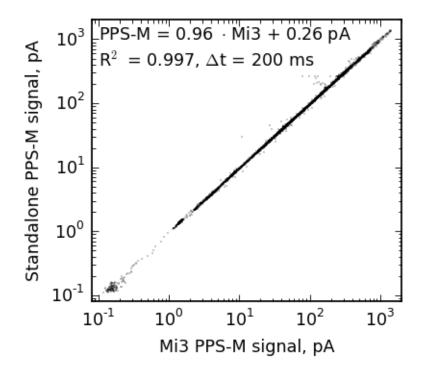

- Renault Megane 1.2L TCe, Turbo, GDI, TWC, 50 000 km
- Sampling at the tailpipe


- To derive any meaningful information from the difference of two sensors, we need good enough precision between instruments
- Intercomparison test route similar to the actual drive cycle, minus higway.

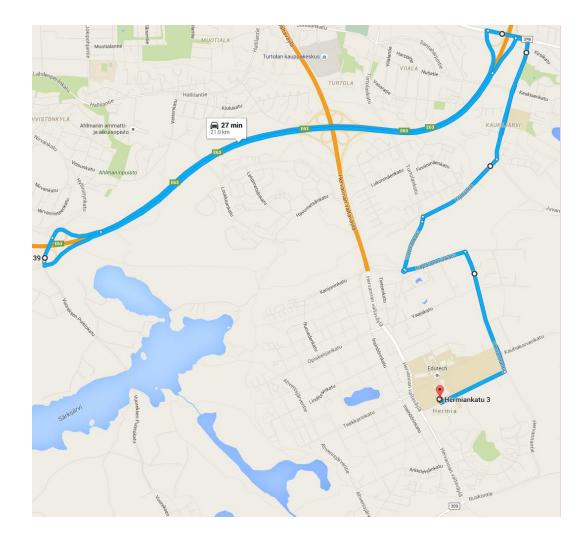

• 4 orders of magnitude used, 2 to spare


• 4 orders of magnitude used, 2 to spare


• 4 orders of magnitude used, 2 to spare


- 4 orders of magnitude used, 2 to spare
- Remember the time offset!

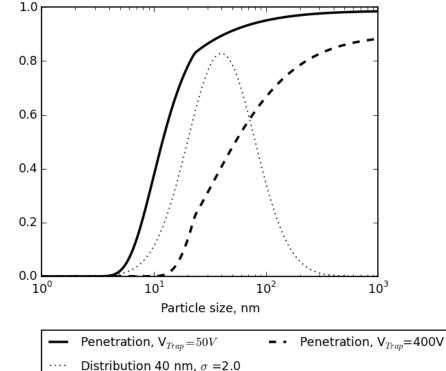
- Remember the time offset!
- 4 orders of magnitude used, 2 to spare



- Remember the time offset!
- 4 orders of magnitude used, 2 to spare

Main test route

- (sub-) urban area
- +Highway part
- Some steep (12%) hills



Particle volatility

Setup:

- CS@300°C
- PPS at 400V
- Mi3 as reference at 50V

- Reasoning for this:
 - At different voltages we catch size changes more easily, rather than concentration changes->volatile coating
 - Less prone to signal change due to losses or delay differences

Particle volatility

Result:

 10^{4}

10³

10

10

10⁰

10⁻¹

10⁻²

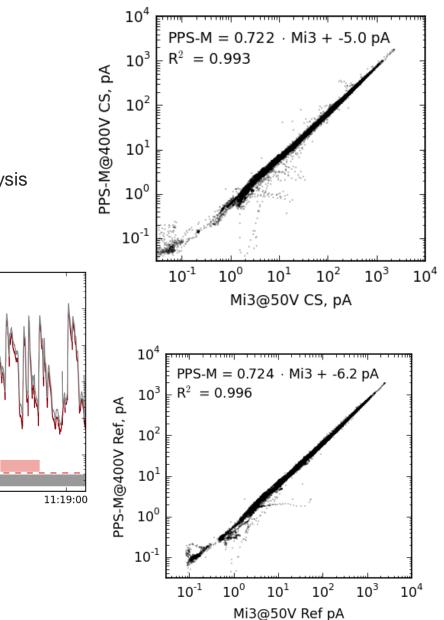
PPS-M signals, pA

• No difference when averaged over the cycle

11:04:00

11:09:00

Noise floor

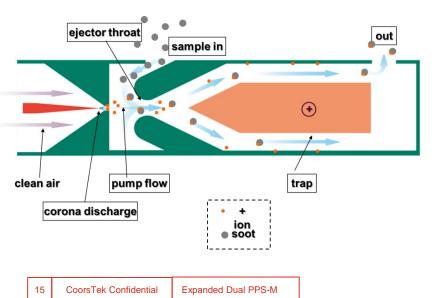

Time, s

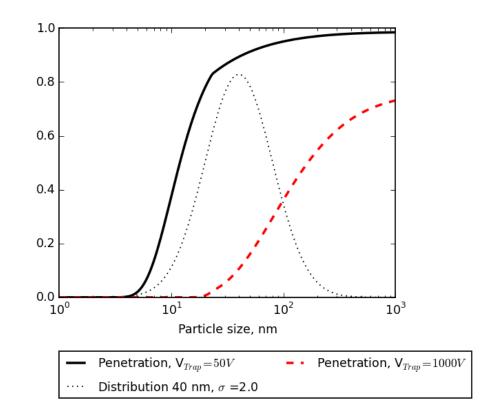
Highway/uphill

Urban/downhill

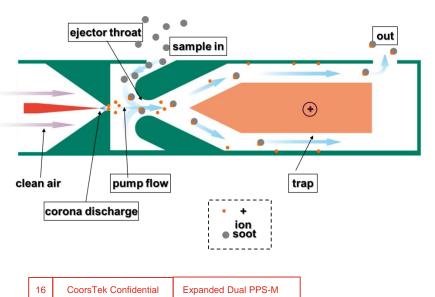
11:14:00

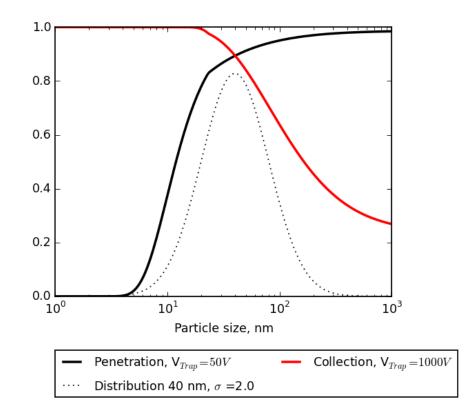
• Temporal size changes do exist, no size analysis done yet (à la Amanatidis et al. 2015)

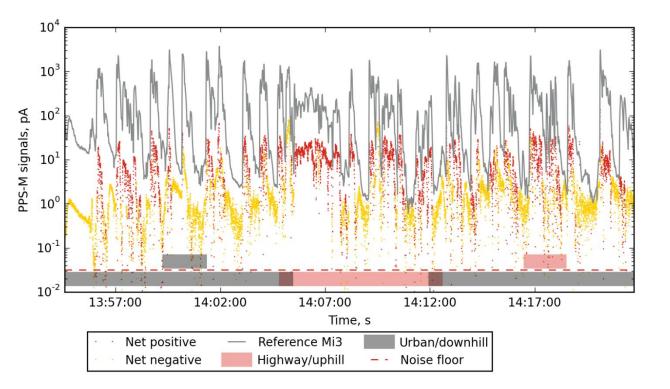



10:59:00

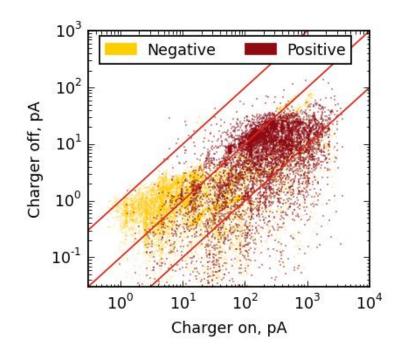
Mi3@50V CS

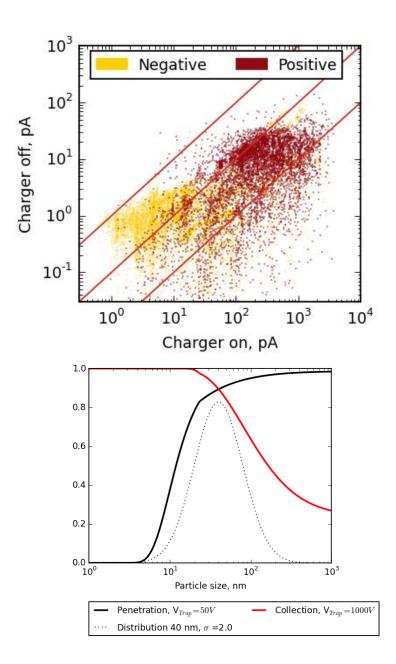

PPS-M@400V CS


- Mi3 (unit A): charger on, trap at 50V
- PPS-M (unit B): charger off, trap at 1000V to catch as much of the particles as possible
- Caveat: We measure overlapping, but different size ranges



- Mi3 (unit A): charger on, trap at 50V
- PPS-M (unit B): charger off, trap at 1000V to catch as much of the particles as possible
- Caveat: We measure overlapping, but different size ranges




- High emission -> net positive
- Low emission -> net negative

- High emission -> net positive
- Low emission -> net negative

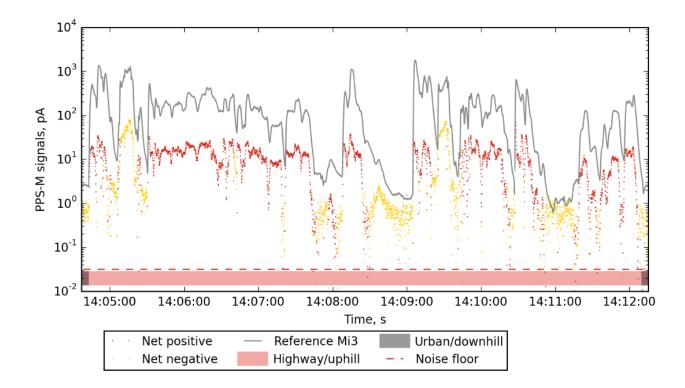
- Not enough data here to have the full story; chemistry missing.
- Normally Boltzmann favors negative charging. Also for combustion products (Maricq, AS&T, 2006&2008, Lähde 2014)
- At high load and acceleration, gasoline engines emit typically high NO and even some NH3, which have high proton affinity
- Hypothesis: at high load, positive ions are favored due to increased proton affinity of the gas
 - Lambda?
- High charging efficiency at negative side lkely explained by nucleation mode outside the response overlap

Conclusion

- Use of CS@300°C did not show any volatiles not already evaporated at 200°C
- GDI net charge state swings widely
 - Proton/electron affinity balance effects?
- Simple sensor can be tweaked to give another dimension of information when paired with a reference

Conclusion

- Use of CS@300°C did not show any volatiles not already evaporated at 200°C
- GDI net charge state swings widely
 - Proton/electron affinity balance effects?
- Simple sensor can be tweaked to give another dimension of information when paired with a reference



References

- Amanatidis, S., Maricq, M. M., Ntziachristos, L., & Samaras, Z. (2016). Measuring number, mass, and size of exhaust particles with diffusion chargers: The dual Pegasor Particle Sensor. *Journal of Aerosol Science*, *92*, 1-15.
- Rostedt, A., Arffman, A., Janka, K., Yli-Ojanperä, J., & Keskinen, J. (2014). Characterization and response model of the PPS-M aerosol sensor. *Aerosol Science and Technology*, *48*(10), 1022-1030.
- Maricq, M. M. (2006). On the electrical charge of motor vehicle exhaust particles. *Journal of Aerosol Science*, *37*(7), 858-874.
- Maricq, M. M. (2008). Bipolar diffusion charging of soot aggregates. *Aerosol Science and Technology*, *42*(4), 247-254.
- Heeb, N. V., Forss, A. M., Brühlmann, S., Lüscher, R., Saxer, C. J., & Hug, P. (2006). Three-way catalyst-induced formation of ammonia—velocity-and acceleration-dependent emission factors. *Atmospheric Environment*, 40(31), 5986-5997.
- Pirjola, L., Karjalainen, P., Heikkilä, J., Saari, S., Tzamkiozis, T., Ntziachristos, L., ... & Rönkkö, T. (2015). Effects of Fresh Lubricant Oils on Particle Emissions Emitted by a Modern Gasoline Direct Injection Passenger Car. *Environmental science & technology*, *49*(6), 3644-3652.

•	• • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · ·
Thank You		
•		
•		
•		
•		
•		
•		
•		
•		
	••••••	
••••••		• • • • • • • • • • • • •
••••••		• • • • • • • • • • • • •
		• • • • • • • • • • • • •
	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • •
••••••		•
		CoopeTry
		CoorsTek
		Amazing Solutions®
		•
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • •

 PS. CTe engine has a "boost mode" at gears 2-4 at high load

