Investigating the operating principle of the Emisense PMTrac sensor

David Bilby, David Kubinski, <u>Matti Maricq</u> Research and Advanced Engineering, Ford Motor Company

2016 PEMS Workshop, CE-CERT

Research and Advanced Engineering

Introduction

- On-board diagnostics (OBD) is required to monitor health of diesel particulate filters (DPF)
- Current method is the resistive sensor
- Many problems
 - deposition efficiency unknown
 - insufficient sensitivity
 - takes too long

Emisense PMTrac sensor – electrostatic trap

Electrostatic traps

Top view

Side view

Segmented

PMTrac

Research and Advanced Engineering

Experimental setup

Trap current & exiting soot mass

Characteristic Behavior

- Delay period of minutes where trap current is pA
- And exit soot mass is ~1/3 of entrance value
- After ~ 1 minute current rises to nA
- And exit soot mass increases

SMPS – APS size distribution of soot at trap exit

Tandem DMA measurement of dendrite fragment charge

Some fragments exiting the trap have very large numbers of charges: tens to hundreds

In situ images of soot dendrites

Top view

Electric field induces growth of high aspect dendritic structures.

Side view

Research and Advanced Engineering

SEM images of soot on electrodes

- Sample unipolar soot into electrostatic trap
- Soot dendrite structures found on both electrodes!
- Implies that soot is moving from one electrode to the other

l0 шт

<u>10 ս</u>m

Trap model

- Kinetic model for soot dendrite growth and fragmentation
- Current carried by dendrite fragments
- S = entering soot flux
- D_n = dendrite with n segments
- Br = "break-off" fragment

Dendrite growth $S + D_n \xrightarrow[k_s]{} D_{n+1}$ $Br + D_n \xrightarrow[k_h]{} D_{n+f}$

Dendrite fragmentation $D_n \xrightarrow[k_F]{\rightarrow} b_r$

$$\sum_{r} D_{n-f} + Br \qquad (n > n^*)$$

Fragment loss $Br \xrightarrow{\rightarrow}_{k_L} exits trap or lost$

 $\mathsf{F}_{\mathsf{anchor}}$

Research and Advanced Engineering

Comparison of model to experiment: 1). Voltage modulation

small modulations of HV, 0.25 – 4%, have a large impact on trap current, 20 - >100%

2) Flow dependence

- Steps up (down) in flow through trap cause transient under (over) shoots in trap current
- This behavior is not seen for step changes in soot concentration

Summary

- PMTrac operates on electrostatic trap principle
- Electric field causes the growth of high aspect ratio dendrites from the electrode surfaces
- As these grow, they reach a threshold height at which the dendrite fragments
- The fragment carries away a charge equivalent to or greater than the surface charge of the electrode
- The resulting "chain reaction" of growth, fragmentation, charge transport amplifies the incoming pA current carried by soot particles to nA levels.

