

Six-Sigma Implications of

Particulate Mass Measurement at a Milligram per Mile

W. Silvis, J. Williamson, D. Meyer – AVL North America

Assessment Overview for 6σ Particulate Measurement Capability

Black Belts:Dan Meyer, Colin Chisholm (advisor)Project Leader:Bill SilvisProject Champions:Jimmy Williamson / Siegfried RoeckMaster Black Belt:noneManagement:Sean Egmon / Rick KaraschinAdditional Team Members:John BushkuhlFinancial Analyst:Jennifer FoulkOrganization:AVL TSI (CAPS)Close Date:December 31, 2015

Consumer Driven

6-Sigma

AVL

Engineering & Business Methodology to:

- 1. Improve quality of products and services.
- 2. Assess and minimize variation.
- 3. Deliberately search to <u>identify defects</u>. (Defect defined as any <u>customer</u> dis-satisfier.)
- 4. Attempt to <u>drive all defects to zero</u>. (True Six-Sigma process is 99.9993% defect free.)
- 5. <u>Estimate value</u> of reducing defects.

Cu

0,00

AVL

Customer Service & Applications Engineering

Particulate <u>DEFECT</u> or Failure Mode Definition:

Measured values that are outside target tolerance range.

Scope of Analysis:

- Process Capability
- Resolution
- **Investigate & Identify Improvements required for:**
- True Six-Sigma tolerance
- Reliable measurements of low-level PM (~1mg/mile)

Challenges:

- 1. No particulate <u>reference standard</u> currently exists.
- 2. Normal <u>measurement system analysis</u> might not apply.
- 3. Particulate constituents, i.e. variables have not been isolated.

AVL

Customer Service & Applications Engineering

6

Particulate levels at or near 1 mg / mile <u>AND</u> At least 8 sample runs for each measuring device

Vehicle Particulate Mass Emissions 0000 Statistics – CVS Phase 3 **Customer Service & Applications Engineering** AVL **Fails Normality Test?** Summary: CVS - Phase 3 Only 2.1 σ from Zero to Mean Anderson-Darling Normality Test A-Squared 1.06 P-Value < 0.005 2.1σ 0.99282 Mean StDev 0.47430 0.22496 Variance 0.99 Skewness 1.83443 2.86124 Kurtosis Ν 9 0.65535 Minimum 0.67110 1st Quartile Median 0.83352 3rd Quartile 1.19996 0.75 1.00 1.25 1.50 1.75 2.00 2.06254 Maximum 95% Confidence Interval for Mean 0.62824 1.35740 * 95% Confidence Interval for Median 0.66794 1.35303 95% Confidence Interval for StDev 95% Confidence Intervals 0.32037 0.90864 Mean Raw Data Courtesy: J. Bushkuhl Minitab Data Analysis: D. Meyer

1.2

1.4

Median

0.6

0.8

1.0

Vehicle Particulate Mass Emissions Statistics – MSS Phase 3

0000

AVL

Customer Service & Applications Engineering

Anderson-Darling Normality Test	
A-Squared	0.21
P-Value	0.799
Mean	0. <u>696</u> 62
StDev	0.10578
Variance	0.01119
Skewness	-0.26219
Kurtosis	-1.12987
N	8
Minimum	0.53373
1st Quartile	0.60201
Median	0.71275
3rd Quartile	0.78357
Maximum	0.84083
95% Confidence Interval for Mean	
0.60819	0.78505
95% Confidence Interval for Median	
0.59320	0.79084
95% Confidence Interval for StDev	
0.06994	0.21528

Raw Data Courtesy: J. Bushkuhl Minitab Data Analysis: D. Meyer

Emissions Engineering-Objective Example

How can we be confident we are meeting the standard, in the fewest number of tests?

MSS [g/mi] - CVS Filter Prediction, Regression Line Fit of Vehicle Data

Copy of Regressions of MSS vs filter data_DLM.xlsx

Vehicle Data Prediction Process Capability (Cp) Assessment AVL

000

Customer Service & Applications Engineering

Mean Value of Filter Data, mg/mile (CVS)

RESOLUTION: (Standard Deviation dependent)

What is the smallest **DISCERNABLE DIFFERENCE** between two actual measured values (or means) that can be reliably detected?

Why a measurement **RESOLUTION** requirement?

- Needed to quantify <u>accuracy</u> or "trueness"
- ➢ Influences the lowest measurement capability
- ➢ Impacts <u>sample size</u> for a given confidence

CVS Sampling Analysis

Customer Service & Applications Engineering

Power analysis is used to calculate the minimum <u>sample size</u> required so that one can be reasonably likely to detect an effect of a given <u>size</u>.

Minitab Power and Sample Size (CVS)

```
1-Sample t Test
```

Testing mean = null (versus not = null) Calculating power for mean = null + difference Alpha = 0.05 Assumed standard deviation = 0.474

MSS Sampling Analysis

Customer Service & Applications Engineering

Power analysis is used to calculate the minimum <u>sample size</u> required so that one can be reasonably likely to detect an effect of a given <u>size</u>.

- Minitab Power and Sample Size (MSS)
- 1-Sample t Test

Testing mean = null (versus not = null) Calculating power for mean = null + difference Alpha = 0.05 Assumed standard deviation = 0.11

- **Projected Financial Benefits:** (Baseline CVS vs using MSS)
- Tests required to evaluate: (@ 0.25 mg/mile diff. & 0.8 power)
 31 tests vs 4 tests (1 regulatory emissions test = 1 "sample")
- Cost of testing to evaluate: (\$500/hr x 2 hr/test = \$1000/test)
 \$31K vs \$4K per powertrain evaluation
 - \$6.2M vs \$0.8M per year (200 lab evaluations per year*)
- Projected Annual Laboratory Savings: \$5.4M

*40 powertrains per year, 1 certification and 4 development evaluations per powertrain
 **Approx. Capital Cost Comparison for Reference: PSS-\$170K, MSS(Std)-\$108K, both in addition to CVS HW

Thank you for your time and attention.