

The Increasing Importance of Vehicle Real-World Data



Matthew Thornton National Renewable Energy Laboratory March 17, 2016

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

The Role of PEMS and Real-World Data

The Emissions Testing Continuum--Repeatability Versus Reality

Combustions Device

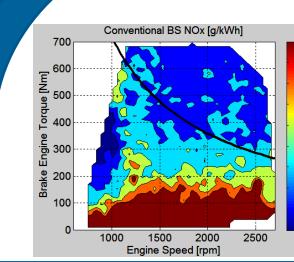
Single cylinder Engine

10

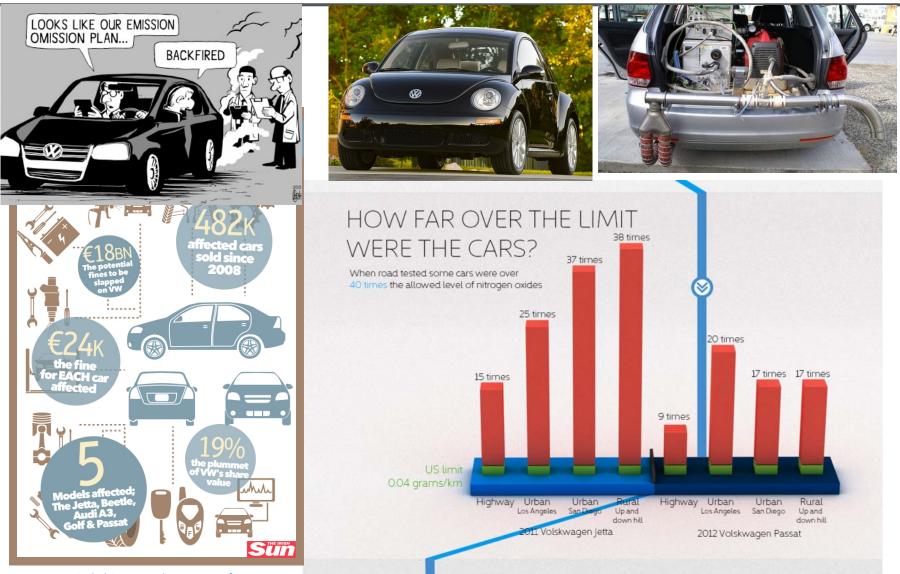
9 8

5

3


Multi-cylinder Engine

Chassis Dyno



Fuel Analysis

Why is PEMS Important: VW Controversy

Source: Arvind Thiruvengadam, Center for Alternative Fuels, Engines and Emissions at West Virginia University

It's More than Just Defeat Devices

Many other Studies Have also Shown In-use Emissions Increases

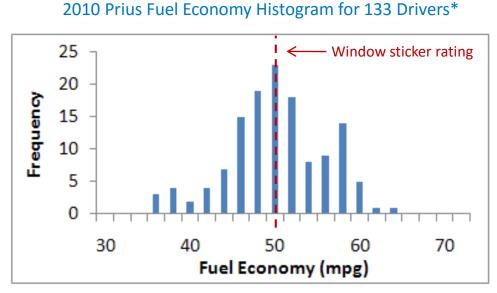
Study	Emissions Increase NOx emissions >6X higher than certified			
More than half of the 14 Euro 6 diesel cars tested with SCR, LNT, or EGR systems(1).				
Two cars, each with LNT or SCR systems(1)	25X higher than certified			
In a study of three vehicles the best performing SCR (2)	3-4X higher			
In the same study the highest (EGR; and LNT+urea-SCR). (2)	5-7X the certified level in PEMS testing			
Study of US Tier 3 light-duty diesel showed high in-use emissionstwo cars with either an LNT or SCR (3)	4-20X the Bin 5 allowable NOx, depending on route. Most SCR emissions were in the range of 10X.			
A Euro 6 gasoline direct injection (GDI) car (4).	2X higher PN emissions on the autobahn versus on the NEDC			
In another study of two Euro 6 GDI cars (5)	10X higher PN emissions at 130 kph (km/hr) versus the NEDC.			
GDI and MPI gasoline engines relative to LD diesels with DPFs. (6)	1.5 to 2.5 orders of magnitude higher hot-start solid PN emissions (10-15 second duration)			

Johnson, T., "Vehicular Emissions in Review," SAE Int. J. Engines 7(3):2014, doi:10.4271/2014-01-1491. REFERENCES:

1. Mock, P.; Franco, V. "Developments in Automotive Emissions in the EU and Globally", presentation at BOSMAL 4th International Exhaust Emissions Symposium, Bielsko-Biala (Poland), May 22nd, 2014. See also www.TheICCT.org

2. May, J.; Bosteels, D.; Favre, C., "A Comparison of Light-Duty Vehicle Emissions over Different Test Cycles and in Real Driving Conditions", Paper F2014-CET-058, 2014 FISITA Conference, Maastricht, June 2014.

3. Thompson, Gregory J.; Carder, Daniel K.; Besch, Marc C.; Thiruvengadam, Arvind, Kappanna, Hemanth K., "In-Use Emissions Testing of Light-Duty Diesel Vehicles in the United States", study for International Council on Clean Transportation, website: www.TheICCT.org

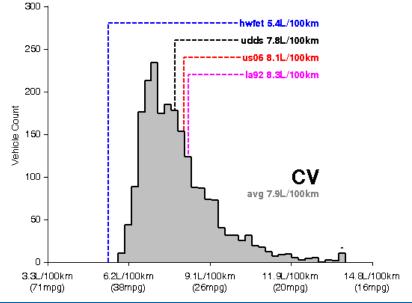

4. Deutsche Umwelthilfe (DUH) press release, October 29, 2013.

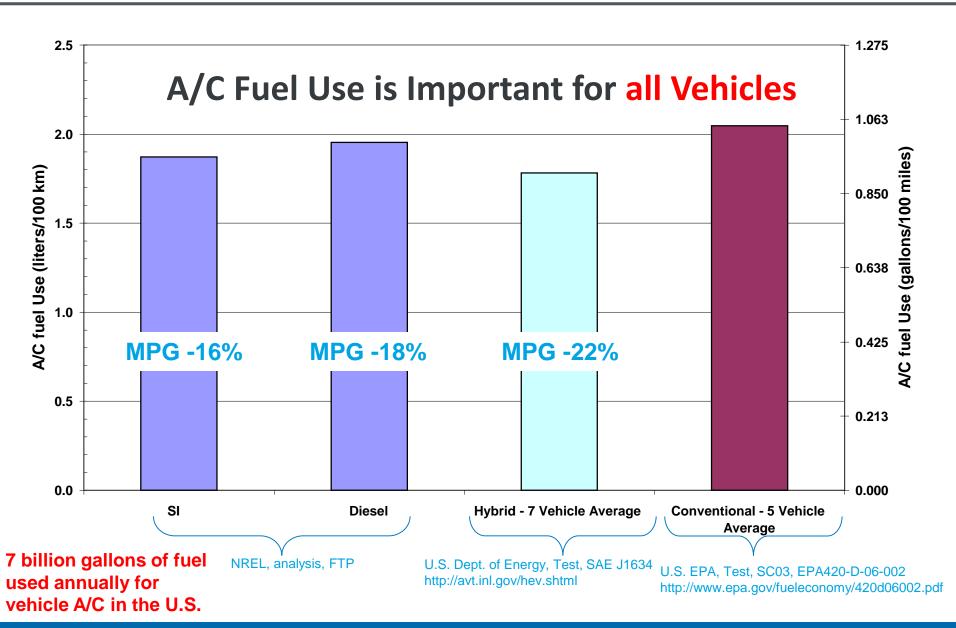
 $http://www.duh.de/pressemitteilung.html? & no_cache = 1 \\ tx_ttnews\%5btt_news\%5d = 3200 \\ & chash = 58b125 \\ fbc6c5b932d5bbe17221354dd2 \\ & chash = 58b125 \\ fbc6c5b932d5bbe17221354 \\ & chash = 58b125 \\ fbc6c5b932d5bbe172221354 \\ & chash = 58b125 \\ fbc6c5b932d5bbe172221 \\ & chash = 58b125 \\ fbc6c5b932d5bbe172254 \\ & chash = 58b125 \\ & chash =$

5. Kolke, R., "Die Grossen Herauseforderungen fuer Diesel-Pkw", 11th FAD Conference "Challenge - Exhaust Aftertreatment for Diesel Engines", Dresden, November 6-7,2013. 6. Khalek, I. A.; Badshah, H., "Particle Emissions from Vehicle Exhaust During Engine Start-Up", presentation at 18th ETH Conference on Combustion Generated Nanoparticles, June 23-25, 2014, Zurich.

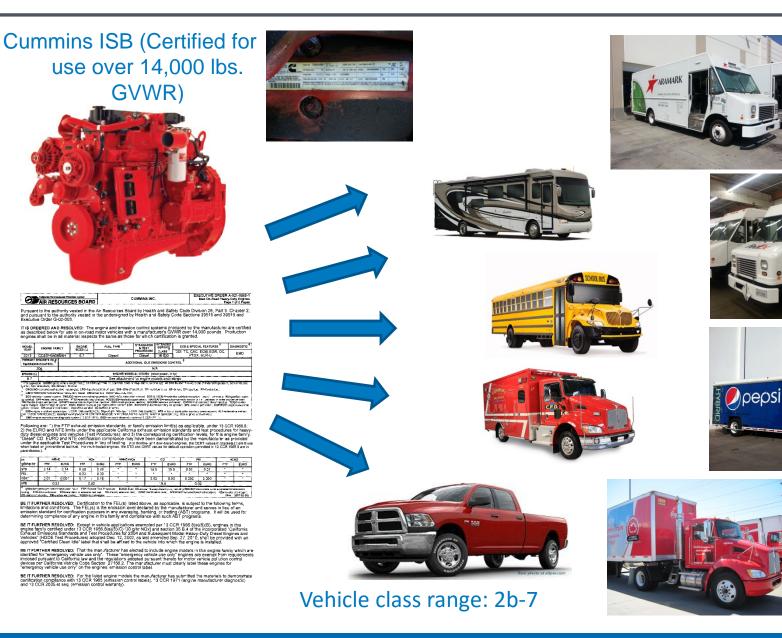
Real-World Effects Emissions and Fuel Economy (CO₂)

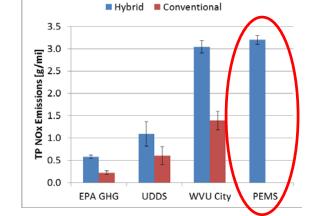
"Your mileage will vary" based on driving style

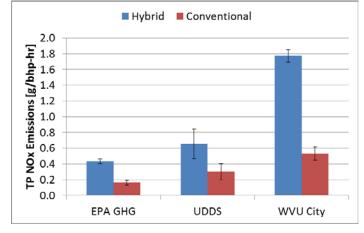


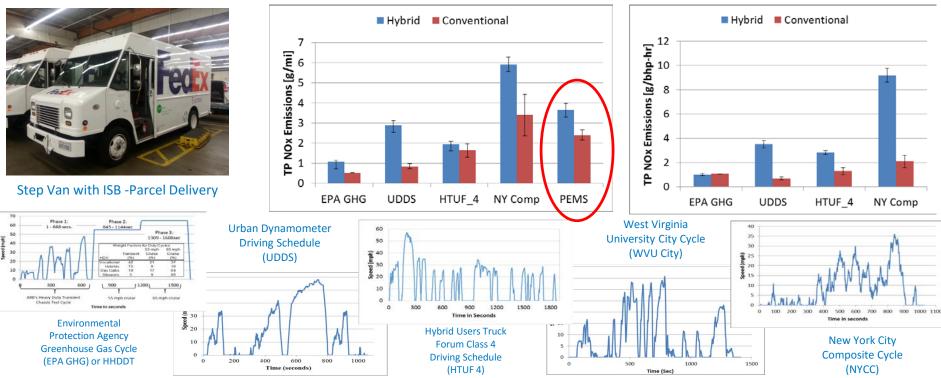

Cert vs. Real-World Variance

- Off-cycle impacts—drive cycle
- Auxiliaries, weather, elevation, driver behavior, traffic...

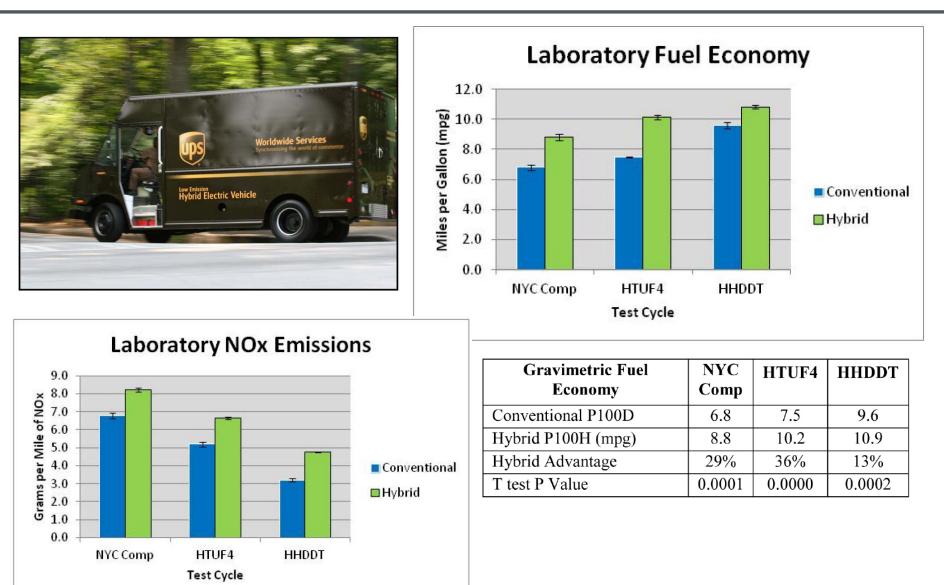

* Data accessed from <u>www.fueleconomy.gov</u>

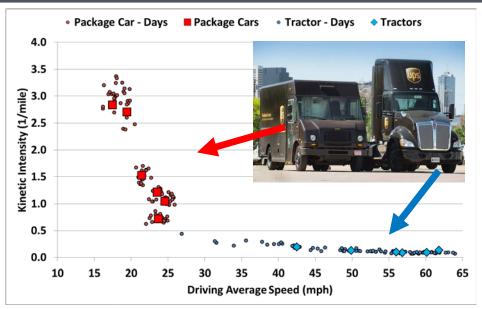

Heavy-Duty: Even a More Complex Issue than LD?

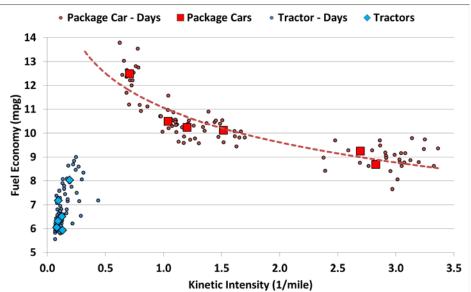



Emissions Impact Example-Hybrid Trucks

Straight Truck with ISB-Beverage Delivery

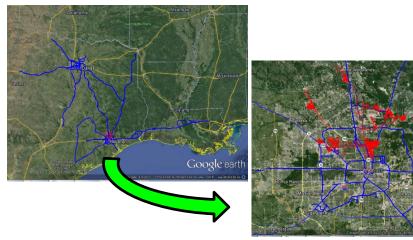





NATIONAL RENEWABLE ENERGY LABORATORY

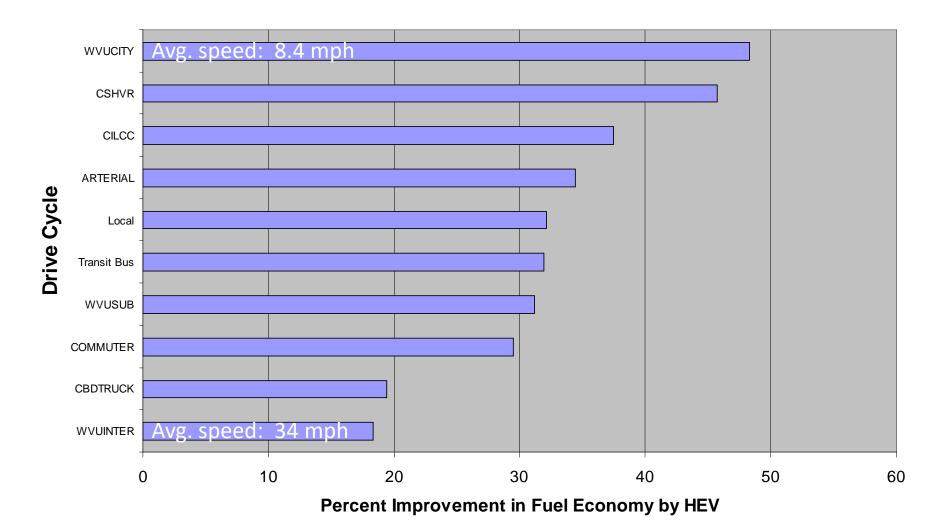
UPS Diesel HEV Class-6 Walk-In Step Vans

UPS Step Van and Tractor Fuel Economy


Field Data showing range of duty cycles for a sample of UPS tractors and package delivery vehicles

3-weeks on-road data collection

- Six class 4 package vans
- Six class 8 tractors


Kinetic intensity clusters indicative of low-speed urban delivery vs. high-speed regional haul duty cycles – note range of operation

CAN-based fuel efficiency correlated to duty cycle parameters – showing influence of duty cycle on fuel efficiency

It's All About the Duty Cycle

Example: hybrid technology benefit on different cycles

NATIONAL RENEWABLE ENERGY LABORATORY

Activity Data is Key for Understanding Real-World Impacts

- Evaluate real-world emissions and fuel-saving opportunities for technologies difficult to assess with standard certification cycles
 - DOE and regulatory bodies want to maximize real-world fuel savings
 - Manufacturers want to get credit for actual emissions and fuel savings achieved
- Example technologies:
 - o Engine Cold Start
 - Hybridization-Start-stop
 - High-efficiency alternators

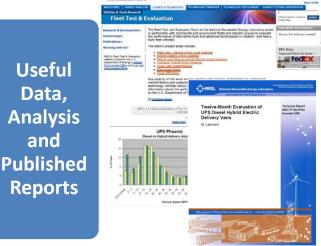
- o Catalyst Insulation
- o Glazing technology
- o Connected vehicle applications
- DOE labs such as NREL can provide objective inputs
- Relevant existing capabilities
 - Evaluation of energy efficiency technologies
 - On-road driving data
 - Fusion of large datasets capturing range of real-world operating conditions

Medium- and Heavy- Vehicle Field Testing Approach

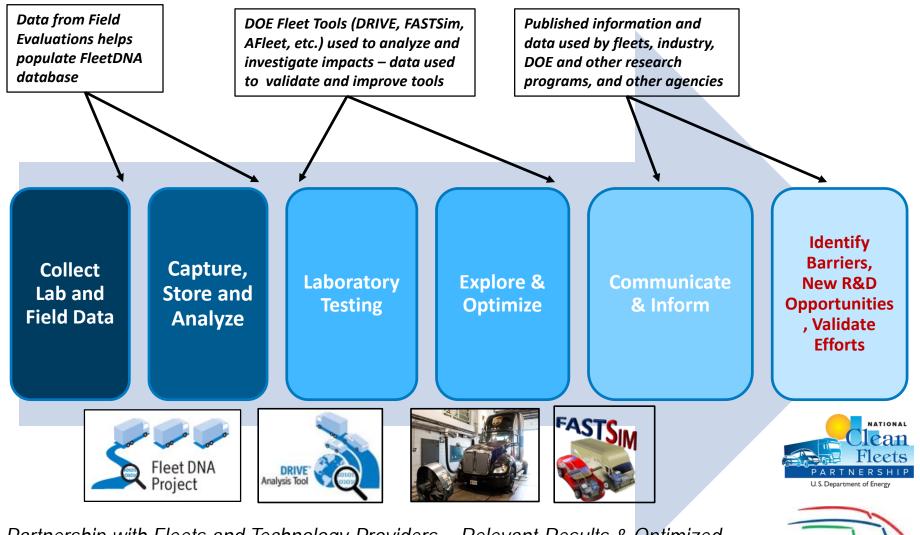
Evaluate the performance of alternative fuels and advanced technologies in medium- and heavy-duty fleet vehicles - in partnership with commercial and government fleets and industry groups vehicles.

Collect, analyze and publicly report data:

- Drive cycle and system duty cycle analysis
- Operating cost/mile
- In-use fuel economy
- Chassis Dynamometer emissions and fuel economy
- Scheduled and unscheduled maintenance
- Warranty issues
- Reliability (% availability, MBRC)
- Implementation issues/barriers
- Subsystem performance data & metrics (ESS, engine, aftertreatment, hybrid/EV drive focus)


Data stored in FleetDNA for security and limited public accessibility

Frequent interactions and briefings with stakeholders – fleets, technology providers, researchers, and government agencies


Transit, PG&E, Miami-**Fleets** Dade, Verizon, Walmart, Waste Management Proterra, Navistar, Smith EV, Eaton, Vehicle & Allison, BAE, EDI, Altec, Equip International, PACCAR, Mfg's Oshkosh, Odyne, Parker-Hannifin, Cummins Ш

UPS, FedEx, Coke,

Frito-Lay, Foothill

NREL Field Data, Testing, & Analysis Tools

Partnership with Fleets and Technology Providers = Relevant Results & Optimized Solutions for Real World Applications

Applying Fleet DNA – NREL's DRIVE Tool

<u>D</u>rive-cycle <u>R</u>apid <u>Investigation</u>, <u>V</u>isualization and <u>E</u>valuation Tool (DRIVE[™])

- Created to help fleets and OEMs analyze vehicle usage data for proper vehicle placement, design and testing
- Combines large amounts of user data then filters, creates new cycles & identifies best fitting existing cycle
- Quickly processes and analyzes data :
 - Over 250 metrics
 - Histograms
 - Scatter plots
 - Creates custom cycle
 - Recommends standard cycles

Transportation Data Centers at NREL

Real-World Data and Analysis to Support Decision Making

Alternative Fuels Data Center (AFDC) Public clearinghouse of information on the full range of advanced vehicles and fuels National Fuel Cell Technology Evaluation Center (NFCTEC) Industry data and reports on hydrogen fuel cell technology status, progress, and challenges Transportation Secure Data Center (TSDC): Detailed individual travel data, including GPS profiles Fleet DNA Data Collection Medium- and heavy-duty drive-cycle and powertrain data from advanced commercial fleets FleetDASH: Business intelligence to manage Federal fleet petroleum/alternative fuel consumption

Features	AFDC	NFCTEC	TSDC	Fleet DNA	Fleet DASH
Securely Archived Sensitive Data		Y	Y	Y	Υ
Publicly Available Cleansed Composite Data	Y	Y	Y	Y	
Quality Control Processing	Y	Y	Y	Y	Υ
Spatial Mapping/GIS Analysis	Y	Y	Y	Y	Υ
Custom Reports		Y		Y	Υ
Controlled Access via Application Process			Y		
Detailed GPS Drive-Cycle Analysis			Y	Y	

Additional Information

Available through Fleet DNA www.nrel.gov/fleetdna

Objectives:

- Capture and quantify drive cycle and technology variation for the multitude of <u>medium- and heavy-duty</u> vocations
- Provide a common data storage warehouse for medium- and heavy-duty vehicle data across DOE activities and labs – <u>www.nrel.gov/fleetdna</u>
- Integrate existing DOE tools, models, and analyses to provide data driven decision making capabilities

For Government : Provide in-use data for standard drive cycle development, R&D, tech targets, and rule making

For OEMs: Real-world usage datasets provide concrete examples of customer use profiles

For Fleets: Vocational datasets help illustrate how to maximize return on technology investments

For Funding Agencies: Reveal ways to optimize impact of financial incentive offers

For Researchers: Provides a data source for modeling and simulation

Fleet DNA: Commercial Fleet Vehicle Operating Data

The Fleet DNA clearinghouse of commercial fleet vehicle operating data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool provides data summaries and visualizations similar to real-world "genetics" for medium- and heavy-duty commercial fleet vehicles operating in a variety of vocations.

Data by Vehicle Category

View and download data, charts, and reports by vehicle category.

This project supports the development and deployment

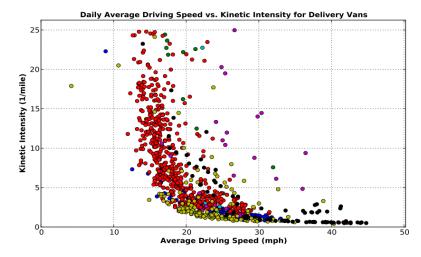
vehicle technologies.

of market-ready advanced

Contribute Data

Learn how to <u>contribute to Fleet DNA</u> anonymously to help other fleets analyze and improve their drive cycle metrics.

For more information, refer to the <u>Fleet DNA fact sheet</u> .


Composite Data for All Categories

View charts with data for all the vehicle categories above or download the <u>composite data for all vehicles</u> . Fleet DNA has 4,705 days of driving data from 486 vehicles operating in the United States.

Average Acceleration and Number of Stops for All Vehicle Categories

Conclusion

- PEMS has important role in collecting real-world data and it's importance is growing
- Off-cycle and environmental impacts can impact emissions and fuel economy greatly
- Advanced technology and alternative fuel can accentuate impacts and are becoming bigger players
- Activity data is key to properly quantifying impacts
- Opportunity for benefits--not just negative impacts

Questions?

Thank You!

Additional Information:

matthew.thornton@nrel.gov 720-232-4285