Genifuel Hydrothermal Processing for Renewable Natural Gas

UCR College of Engineering- Center for Environmental Research & Technology

James Oyler President Genifuel Corporation 17 May 2017

Overview of Hydrothermal Processing

- Hydrothermal Processing (HTP) uses temperature and pressure to convert wet organic matter to biocrude oil and natural gas
- Process mimics the way fossil fuels were formed, but in 45 minutes rather than millions of years
- Can produce all oil, all methane, or combination
 - Hydrocarbons are produced in single continuous process
- Highly efficient—captures more than 86% of feedstock energy and uses only 14% for process
 - Energy yield app. 2x biological processes

Photo of An Operating HTP System

How HTP Works

- Uses subcritical water and pressure (no solvents) to convert wet organics into crude oil and methane
 - 350°C and 200 bar, built from stainless steel
 - Temperature much lower than syngas processes
- Feedstock is completely converted—no solids left and no char
- Water is conserved and effluent is clean and sterile
- Plant nutrients are recovered as fertilizer
- High efficiency, solids elimination, nutrient recovery, and small size makes systems economical

Outputs of Hydrothermal Processing

- Can produce biocrude oil, RNG (methane), or both together
 - Greatest energy output is from producing both together
 - If oil is produced, can be processed in existing refineries into finished fuels (gasoline, kerosene, diesel)
- Gas output is 65% methane, 35% carbon dioxide
 - Need to strip CO₂ for pipeline—easily done
 - Reminder: This is methane, not syngas $(CO + H_2)$
- Gas is clean and needs no further cleanup—major advantage over biogas from landfill or AD

Developed by US DOE Over 40 Years Together with Genifuel Over Last 10 Years

- Published in dozens of journals, reports, patents, etc.
- Thousands of successful tests and now successful pilot plants
- One of the best-documented new processes ever

gasification of biomass

Genifuel Hydrothermal Processing Bench-Scale Technology Evaluation Project

Genifuel HTP Status of Implementation

	Name	Description	Year	Size (wet)	Cost	Funding	Feedstock
1	PNNL Bench Scale 1	First bench-scale unit, oil and gas	1991	36 L/d	\$225K	100% DOE	Various
2	PNNL Mobile System	Trailer-mounted gas only	1993	100 L/d	\$325K	100% DOE	Various
3	PNNL Bench Scale 2	Updated test unit, oil only	2014	50 L/d	\$500K	100% DOE	Various
4	Pilot System (HPPS)	Combined oil and gas	2015	1,500 L/d	\$4 million (installed)	25% DOE 75% Reliance	Algae
5	PNNL Modular HTL System	Engineering HTL system	2016	300L/d	\$2M (installed)	100% DOE	Various
6	CEC System (Containerized)	HTL + CHG demonstration	2017	50-100 L/d	\$650K	CEC and SoCalGas	Dairy Cow Manure
7	Metro Vancouver Pilot System	Install in Canada for WWTP	2017 (Planned)	10,000 L/d	\$8 million (est. installed)	50% MV, 50% Canada	Wastewater Solids
8	HYPOWERS	Install in USA, next scale-up	2019 (Planned)	15,000 L/d	\$15 million (est.)	50% DOE	Wastewater Solids

RNG Output from Low-Hanging Feeds

Feedstock	Millions of dry metric t/y	Methane, billions of cu. ft./y	
Dairy Cow Manure	19.3	340.7	
Organic Portion of MSW	13.0	229.5	
Wastewater Solids	12.4	218.9	
Food Processing Waste	10.9	192.4	
Non-Dairy Cattle Manure	10.8	190.6	
Pig Manure	9.4	165.9	
TOTALS	75.8	1,338	
Total US Natural Gas Use, 2016		27,497	
As % Total US Use*		4.9%	

*Note: With addition of agricultural waste and wood, could supply more than 20% of total US gas

Next HTP Pilots Planned in Vancouver and Northern California (Contra Costa)

HTP Compared to AD (Wastewater)

MEASURE	HTP (USD \$000)	AD (USD \$000)
Capital Expense	\$4,560	\$5,346
Operating Expense	\$215/y	\$388/y (inc. sludge)
Revenue	\$131/y	\$26/y
20-Year Net Cost	\$5,532	\$10,136

- Specific case is for a wastewater treatment plant
- In this example, HTP 20-yr NPV cost is 55% of AD

* Interest = 7%; OpEx Annual Increase = 3%; Oil and Gas Annual Price Increase = 4%

Equipment Installation

- HTP system is skid-mount and factory-built
 - Shipped to site by truck
 - May be containerized for sea shipment
- Site installation requires pad, utilities (electricity, water, drain), and cover (roof or building)
- Best to install at feedstock site to reduce transportation of wet feedstocks
- Ideal location is near gas pipeline for insertion into pipeline; oil can be trucked to refinery if oil is made

Project Structures

- Project can be owned by feedstock provider (e.g. wastewater plant) or can be investor-owned
- If project is investor-owned, then investor will provide a turnkey system
 - Feedstock owner provides long-term supply contract Investor sells outputs (oil, gas, electricity)
- Investor could be strategic—e.g. oil or gas company, water treatment equipment company, etc.

Economic Factors

- Economics driven by four factors
 - Feedstock cost (should be negative)
 - Price of oil and gas
 - Government Incentives
 - CapEx—dropping fast but more reduction planned
- Examples of government incentives:
 - US Federal Renewable Fuel Standard RINs
 - Federal and state tax incentives (compare to wind/solar)
 - California Low Carbon Fuel Standard (LCFS)
 - Similar Canadian programs current or future
- Preliminary analysis shows will qualify for D3 (Cellulosic) RINs and be carbon-negative

Why Do This?

- IP, R&D, and initial scaling already proven
- Feedstock is there—For Example, 16,000 wastewater utilities in North America, with solid waste issues
- Regulatory environment supportive worldwide
- Government incentives can provide large benefits
- Significant contribution to GHG reduction targets

Major Triple-Bottom-Line Benefits—Economic, Social, and Environmental

What Is Needed to Accelerate Adoption

- Hydrothermal Processing is in classic gap between pilot systems and full-scale commercial adoption
 - Funding needed to bridge gap and accelerate uptake
- Many potential customers are in "Show-Me" mode
- Funding is non-traditional
 - Does not fit typical Venture Capital model
 - Most funding so far has been government
 - SoCalGas is first commercial entity to provide significant support
- Most likely investment is from project finance, energy companies, or equipment companies

What Are Roadblocks?

- Need much greater interest from refiners and gas companies to understand the process and the high quality of the outputs
 - Process and outputs are unfamiliar to refiners and gas companies
 - Often confused with pyrolysis oil and syngas, which are quite different
 - Provide technical resources to test HTP oil and gas and how to insert into existing facilities and processes
- Ensure that government support and regulations are not biased toward existing processes

Contact

James Oyler

President Genifuel Corporation 801-467-9976 (Office) jim@genifuel.com www.genifuel.com

Hydrothermal Processing

Thank you!

Appendix

Genifuel Worldwide Partners

SoCalGas

A Sempra Energy utility

JGENC

leidos

metrovancouver

