

RENEWABLE NATURAL GAS SYMPOSIUM

RNG Adoption from Lab to Market – Advancing Technological Innovation and Efficiency Gains

Panel Discussion 1 – Thermochemical RNG Production – Barriers & Opportunities

Arun Raju

Center for Renewable Natural Gas,
CE-CERT, University of California, Riverside

California Biomass Potential

- Estimated 100 million dead trees in California
- Located in 10 high hazard counties in the southern and central Sierra Nevada region
- Harvesting, processing & transportation challenges

	kBDT/yr
Agricultural residue	5,407
Food and fiber processing residue	3,373
Animal manures	4,242
Forest biomass	14,256
MSW	8,806
Total	36,083

Total energy content ~ 557×10⁶ MMBtu/yr

Technology Options

- Extraction Mechanical
- Transesterification Chemical
- Anaerobic digestion
- Fermentation
- Gasification
- Pyrolysis

Biological

Thermochemical

Biomass to Fuels

Thermochemical

- Extreme process conditions (temperature, pressure)
- High capital costs

Biological

- Mild process conditions
- Low capital costs

	Thermochemical	Biological
Reaction rates; g/L/h	10 ³ - 10 ⁴	10 ¹ - 10 ²
Feedstock flexibility	High	Low
Thermal efficiency	High	Medium/low
Temperature, °C	~1000	~30
Pressure, atm	20-50	1

Gasification

C + Gasifying agent + Heat (700-1400 °C) \longrightarrow Gases (H₂, CO...) + ash

Steam Hydrogasification

$$C + H_2 O + 2H_2 \rightarrow CH_4 + H_2 O + 75kJ / mol + others$$

Hydrogasification in the presence of steam

Effect of H₂O/C and H₂/C Ratio

SHR based **RNG** production

SHR – Steam Hydrogasification Reactor, WGS – Water Gas Shift Reactor, FPU – Feed Pretreatment Unit

Feed Pretreatment

Hydrothermal Pretreatment for Pumpable Slurry Formation

SHR Gasifier

PDU scale →

- O.1 TPD (Dry Basis)
- Slurry Feeding System
- Bubbling / Circulating
 Fluidized Bed Gasifier

Feed Pretreatment

Thermochemical Conversion

- Feedstock Flexibility
 - Accept most carbonaceous matter
 - Waste conversion
- Product Flexibility
 - Syngas is a versatile feedstock
- Environmental Benefits
 - GHG and criteria pollutant mitigation
- High Efficiency
- High capital costs
 - Distributed facilities
- Technology maturity
 - Innovative solutions needed
 - Demonstration & pre-commercial activity
- Policy barriers
 - Public perception

Thermochemical Conversion

Significant potential but unrealized

- Invest in RD&D
- > Technological innovation
- > Policy advocacy
- Outreach/education

arun@engr.ucr.edu www.cert.ucr.edu