

Glad to be of service.[®]

RENEWABLE GAS PRODUCTION – WHAT SOCALGAS IS DOING

RENEWABLE GAS ADOPTION FROM LAB TO MARKET - Advancing Technological Innovation and Efficiency Gains RENEWABLE GAS CONFERENCE

The University of California, Riverside CENTER FOR RENEWABLE NATURAL GAS Bourns Technology Center May 17, 2017

Woodchips to RG

2012 – 15 G4/CEC woodchips-to-methane

2017 GTI/Andritz engineering study for gasification at a former wood incinerator plant

Glad to be of service.®

WASTE TO VALUE

low-cost feedstock is essential

Glad to be of service.[®]

Solar Thermal

low-cost solar thermal + thermochemical processes maximize RNG and H₂ yield

goal: <1¢/kWh_t, \$3/MMBTU)

Glad to be of service.[®]

Biomethanation NREL P2G Demonstration

<u>cycle</u>

- PV (e-) → water electrolysis (H₂)
 → biological methanation
- (CH₄) \rightarrow steam methane reforming
- $(H_2) \rightarrow$ fuel fell (e-)

commercial development

10 MW power-to-gas plant is being developed by the Hungarian utility Magyar Villamos Művek and Munich-based startup Electrochaea GmbH.

Archaea

Electrochaea's 1 MW Pilot Biomethanation Reactor, Copenhagen

Electro-Methanogenesis 3-D Printed Reactors For a

With Stanford and LLNL -3D printed, high surface area electrode-based reactors for microbial electromethanogenesis

Using adsorbed enzymes for P2G (1-step electrons to methane)

Electrochemical CO₂ Reduction

Opus 12 metal nanoparticle catalyst and polymer membrane combination methane from CO₂, water, and electricity.

co-electrolysis pathway for producing RNG from excess renewable electricity.

Link1 and Link 2

Renewable hydrogen from NG

- 20% incremental renewable energy attribute
- solar-to-thermal energy conversion ~ 84%
- solar-to-chemical energy conversion ~ 70%
- overall energy conversion efficiency ~ 90+%
- when co-producing H_2 and CH_3OH , the carbon intensity of the H_2 is very low

Microchannel SMR Nacelle

Dish CSP SMR

Catalytic Nonthermal Plasma JPL

efficiently producing hydrogen as-needed from natural gas and water.

- Efficiency (> 75%)
- Small form factor
- Low temperature (450°C)
- Multiple stop/start capability
- Production ~ 5 Kg H2/day
- \$ 2-4 gge H2

CNTP SMR Reactor

JCAP Joint Center for Artificial Photosynthesis

SoCalGas participates as an "Industry Partner"

direct solar hydrogen and methane production

end-game technology

Conclusions

- Renewable methane and hydrogen RH2 offer important pathways to high levels of penetration of renewable energy
- Technology, economic and regulatory challenges must be addressed
- We need "all of the above and more" to meet future requirements for low carbon resources
- Utility companies like SoCalGas have an important role to play in creating California's energy future

rkent@semprautilities.com

THANK YOU!

Glad to be of service.®