HORIBA Explore the future

HORIBA Ltd,

Automotive Measurement R&D Dept. Shun Fukami

Development Tools for Advanced On-Board Emissions Measurements of NMHC and Particulates, Plus a Coaching Tool for Increasing RDE Test Yield

> March 22nd 2018 8th PEMS Conference

Contents

Background

- On-board NMHC measurement
- On-board Sub-23nm PN measurement
- Coaching tools for RDE
- Conclusion

Contents

Background

On-board NMHC measurement

- On-board Sub-23nm PN measurement
- Coaching tools for RDE
- Conclusion

Demands of new analyzer for PEMS

- Necessity for measuring CH_4 gas emitted from HDV.
- Demand for CNG (Compressed Natural Gas) engine.

Sub-23nm PN

- Higher health effect from smaller particle
- Study for GDI engine on-road

Contents

Background

On-board NMHC measurement

- On-board Sub-23nm PN measurement
- Coaching tools for RDE

Conclusion

NMHC analyzer unit for **PEMS**

Principle

- Vacuum type hot **Dual-FID** is adopted.
- NMC(Non-methane Cutter) method is used. •

Measurement components

THC, CH₄, NMHC (calculated)

Heated tube

Features

۲

CH_4 : Possible to be calibrated by using both C_3H_8 and CH_4 .

In-line filter •

Calibration gas

Heated filter and tube are united.

Dual FID in PEMS

- Difficulty of Dual FID
 - Not ignited : Pressure interference at ignition
 - Misfire : The clogging caused by condensed water

- Break through
 - Added buffer tank to reduce the pressure interference.
 - Condensed water is vaporized utilizing residual heat of NMC.
 - Added the drain pot outside the system and prevent from clogging the water.

Stability for environmental change

- Using linear value for the flow control, not regulator
 - It is important to control the differential pressure(DP) of sample capillary continuously.
 - F/B control by linear valve with additional DP sensors.

Environmental performance on Mt. Fuji

Correlation tests on chassis dyno

Correlation tests on chassis dyno

Good correlation with conventional device at Laboratory correlation test.

Correlation tests on chassis dyno

Good correlation with CVS at Laboratory correlation test.

Contents

Background

On-board NMHC measurement

On-board Sub-23nm PN measurement

Coaching tools for RDE

Conclusion

Size of Particles on vehicle exhaust

- Some researches showed evidences about the existence of sub-23 nm solid particles at VPR(Volatile Particle Remover) outlet
- Sub-23 nm solid particles are considered as ash contents generated from the metal additives in lubricant oil
 - PMP compliant systems cannot detect such fine particles

Configuration of PN-PEMS

 \checkmark

 \checkmark

System Detection Efficiency

- Modified lower detection limit of the CPC inside of the PN-PEMS extended particle size range
- Modified PN-PEMS has steeper cut-off performance due to higher particle losses in the preconditioner

Comparison on Engine Dynamometer without DPF

- ETC test cycle was performed by a diesel engine without DPF
- Difference was observed only at idle mode during the warmup phase due to higher amount of small particle emission

Comparison on Engine Dynamometer with DPF

- ETC test cycle was performed by a diesel engine equipped with a DPF
- Almost the same real-time PN concentrations were observed
- The result suggests high filtration efficiency of the DPF with sub-23 nm particles

Comparison during DPF Regeneration

- The DPF was regenerated by a high speed and high load steady state operation condition
- **No difference was observed even with high amount of volatile components**
- Sufficient volatile particle removal performance was ensured

Comparison on Chassis Dynamometer with GDI vehicle

On-Road Testing

- On-road tests were performed by a diesel vehicle equipped with a DPF
- Almost the same real-time PN concentrations were observed regardless of DPF regeneration
- The result suggests high filtration efficiency of the DPF with sub-23 nm particles again

Contents

Background

- On-board NMHC measurement
- On-board Sub-23nm PN measurement

Coaching tools for RDE

Conclusion

RDE Test Validity

A valid RDE test needs to meet a comprehensive list of criteria

Parameter		Provision set in the legal text		
Payload		≤90% of maximum vehicle weight		
Altitude	Moderate	0 to 700 m	Location	
	Extended	Between 700 and 1300 m	Location	
Altitude difference		No more than a 100-m-altitude difference between start and finish	and	
Cumulative altitude gain		1200 m/100 km	weather	
Ambient temperature ¹⁴	Moderate	0°C to 30°C		
	Extended	From -7°C to 0°C and 30°C to 35°C		
Stop percentage		Between 6% and 30% of urban time		
¶aximum speed⁵		145 km/h (160 km/h for 3% of motorway driving time)		
Dynamic boundary conditions	Maximum metric	95th percentile of v^*a (speed * positive acceleration)	Driving	
	Minimum metric	RPA (relative positive acceleration)	Style	
	Curves shapes shown in Figure 2.			
Use of auxiliary systems		Free to use as in real life (operation not recorded)		

Source: The ICCT January, 2017 policy update on RDE test procedure

Any data point falling outside of the boundary conditions makes the whole test invalid

RDE CoDriver

- The ideal tool to manage the complicated RDE test requirements
 - RDE CoDriver is a mobile app providing real-time guidance for the driver ensuring that the test will meet the required criteria
 - Can be utilized in conjunction with a PEMS for actual testing or stand-alone to train inexperienced drivers
 - The system immediately informs the driver in case a data point falls out of boundary, minimizing wasted test time
 - Supports moving-average window (EMROAD) and power-binning (CLEAR) method
 - Maximizes the output of valid RDE tests

	CATION	TRIP					
(116.4 km/t	(0.6 mins						
URBAN	RURAL	MWAY					
Distance share (km) 16							
0.1	0.2	0.4					
Distance share (%)							
29 - 54	23 - 43	23 - 43					
16.9	27.7	55.4					
Acceleration count (#) 150							
1.0	1.0	1.0					
va_pos[95%]							
15.7	19.7	19.3					
RPA Limit (%)							
1.0	0.8	0.6					

MWay

0.0

0.0

RDE CoDriver

During test

RDE CoDriver

Test result

	CATION	TRIP	
Profile			
RDE (EU) 20	17/1151	~	
🌣 Configur	ation	~	
Active device	GPS		
2 Results			
RDE-(EU)-20 09:52:15	17-1151-27.9.	2017 / 🗸	
RDE-(EU)-20 07:39:28	17-1151-27.9.	2017 / 🔨	
•	۲	Ē	
		C	

Result Views

Emission power binning

RDE+ Data Manager

Bringing the road data into the lab

- The RDE+ Data Manager provides a direct link from the RDE CoDriver to the test laboratory
- Drivers can upload the test results to the central data storage, so engineers and can immediately review them or replicate the test on a chassis dyno
- Engineers can observe the RDE CoDriver display from their office
- Engineers can transfer new configuration data to the RDE CoDriver

Contents

Background

On-board NMHC measurement

On-board Sub-23nm PN measurement

Coaching tools for RDE

Conclusion

Conclusion

On-board NMHC measurement

- The Vacuum type Dual-FID detector was newly developed. It has countermeasure against "not ignited" and "misfire".
- The stable data was obtained for environmental change in real driving by reexamining the control of differential pressure.
- Good correlation result with CVS at laboratory was obtained.

On-board Sub-23nm PN measurement

- It was possible to observe differences in PN concentrations between the PMP compliant laboratory system and the modified sub-23 nm system. This result suggests the smaller size particles are contained in vehicle exhaust.
- Since filtration efficiency of the DPF to sub-23 nm particles was high, small measurement difference between different lower detection limit settings was observed.

Coaching tools for RDE

- It gives real-time guidance for the driver ensuring that the test will meet the required criteria. This maximizes the output of valid RDE tests
- The RDE+ Data Manager provides a direct link from the RDE CoDriver to the test laboratory. Engineers can observe the RDE CoDriver display from their office

Thank you

